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PREFACE 

The research described in this final report was performed at McDonnell Douglas Aerospace - 

East, Saint Louis, Missouri under Contract F49620-92-C-0057, entitled "Nonlinear Control of 

Missiles." The program was managed by Dr. Marc Jacobs of the Dynamics and Control Branch, 

Directorate of Mathematical and Computer Sciences, Air Force Office of Scientific Research, 

Boiling Air Force Base, DC. 

McDonnell Douglas's program manager and principal investigator was Dr. Kevin Wise. The 

research described herein was performed by Dr. Kevin Wise, Dr. Jackson Sedwick, and Ms. 

Rowena Eberhardt of McDonnell Douglas, in consultation with Professors Christopher Byrnes, 

Alberto Isidori, and Heinz Schattier of Washington University, Saint Louis. 

The research reported here was conducted during the period September 1992 through 

September 1995. 
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1 Introduction 

In aircraft close-in-combat scenarios a large off-boresight angle targeting capability, or the 

ability to engage targets in the rear hemisphere, is a significant advantage. Super agility in missiles 

refers to this capability. The research documented in this report is focused on developing this 

capability for air-to-air missiles. Following a successful missile launch and separation, low 

dynamic pressures can render aerodynamic controls ineffective in performing an agile turn. When 

the main propulsion system ignites vectoring the thrust can provide this capability. As the velocity 

increases, the aerodynamic surfaces become more effective, and may be blended to further enhance 

agility In order for the missile to possess super agility some form of alternate control is needed. 

New Air Force interests in missile alternate controls (reaction jets, thrust vectoring) to 

augment, or possibly eliminate, aerodynamic control surfaces poses a considerable control system 

design challenge. Low cost reaction jets are constant thrust devices which result in bang-bang type 

controls. Thrust vector control actuation systems have hard angle and rate limits and actuator 

nonlinearities. Blending these alternate controls with aerodynamic control surfaces combine 

current linear autopilot design problems, typically solved using linear robust control methods, with 

nonlinear controls in which design methodologies do not exist. In addition to the nonlinear 

actuation systems, the high angle-of-attack missile dynamics and aerodynamics are very nonlinear. 

The Nonlinear Control of Missiles research was focused on developing innovative flight 

control system design concepts, algorithms, and design tools to address agile missile technology 

needs. Specific progress was made in the following three areas: 

• Missile flight control using nonlinear H^. 

• Sliding mode design for reaction jet controlled missiles. 

• Nonconservative mixed uncertainty analysis algorithms. 

1.1 Research Objectives, Accomplishments, and Transitions 

The Nonlinear Control of Missiles research objectives address several aspects of missile flight 

control system design. The agile missile flight control problem requires controlling the missile's 

flight at high angles of attack using actuators that are nonlinear. The research objectives in 
applying nonlinear H^ optimal control and sliding mode design address the nonlinear aspects of 

this problem. The third research objective in developing nonconservative robustness analysis 
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algorithms addresses the need to analyze flight control systems about an operating point. Using 

linearized models of the missile's dynamics, nonconservative analysis algorithms are required to 

determine the flight control system's sensitivity to uncertain dynamics and aerodynamics. 

The following paragraphs briefly summarize the research objective, accomplishments made, 

and transitions of the technology in each area. 

Missile Flight Control Using Nonlinear ffM 

The research objective was to apply recently developed nonlinear Hx optimal control to missile 

flight control problems. Accomplishments include developing algorithms to approximate the 

solution of the Hamilton-Jacobi-Isaacs partial differential equation, developing software for 

implementation of this approach to general nonlinear problems, and application of this approach to 

a six dimensional missile flight control problem. The software has been transitioned to MDC's 

Guidance and Control Technology IRAD for further application to missile guidance and control 

problems. One journal paper [1] and three conference papers [2-4] were published presenting 

theory and application of the approach. 

The method of successive approximations was used to obtain an approximate solution to 

characteristic equations for the Hamilton-Jacobi-Isaacs partial differential equation. Software was 

developed and connected to MATRIXx to implement the approach on a nonlinear missile flight 

control problem. The missile software used only the 1st approximation to the integral equations. 

The approach was applied to an agile missile using aero/TVC control actuators performing an 

agility turn. Simulation results show excellent performance. A six dimensional state vector was 

used in modeling the missile's dynamics. 

FORTRAN software was developed that applies the successive approximation solution 

procedure to the characteristic equations for general nonlinear problems. Documentation to support 

the software is contained in Appendix A, with the FORTRAN listings given in Appendix B. The 

software can be obtained from the authors electronically (by email) at wisek@mdcgwy.mdc.com. 

Sliding mode design for reaction jet controlled missiles. 

The research objective was to develop high performance autopilots for blending reaction jet 

thrusters with aerodynamic control surfaces for anti-air missiles. Since low cost reaction jets 

(reaction control valves) are on-off devices, a variable structure control approach was used. Under 

this objective, algorithms for designing Hx sliding modes were developed. 

McDonnell Douglas Corporation 
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The necessary theory extensions were made to design sliding mode control laws using //«, 

design methods. This new design method combines results from singular perturbation theory and 
high gain feedback control theory. The H^ sliding mode design algorithms were applied to a 

missile autopilot design problem. The resulting control laws were used to blend aerodynamic 

controls with on-off reaction control valves (RCVs) to maneuver a missile. A comparison of the 

improved disturbance rejection capabilities of the //M sliding mode design was made with a linear 

quadratic based design. A conference paper [5] was written presenting the theory extensions and 

design results. 

This research was transitioned to MDC's Air Force Alternate Control Technology (ACT) 

program, Contract No. F08630-92-C-0010. The ACT program is evaluating alternate missile 

control effectors (reaction jet thrusters, thrust vectoring) to improve missile agility. MS Eberhardt, 

who supported this AFOSR research, was also responsible for designing missile autopilots (for 

on-off reaction jets) on the ACT program. Her dual role (AFOSR researcher/project engineer) led 

to an improved understanding of sliding mode controllers, and improved autopilot design software 

for the ACT program. 

Nonconservative mixed uncertainty analysis algorithm. 

The research objective was to develop a parameter space based nonconservative analysis 

capability that can compute robust stability bounds on simultaneous real and complex uncertainties. 

Algorithms were developed that combined simulated annealing with conjugate gradient 

optimization. Under MDC IRAD, these algorithms were coded in FORTRAN and incorporated 

into a toolset used by MDC's aircraft and missile projects. 

Significant progress was been made in the development of a software analysis tool capable of 

analyzing mixed uncertainties. The FORTRAN program developed is referred to as ROBUSTC. 

Sample analysis problems that have 3 or fewer uncertainties have been analyzed using ROBUSTC. 

Results computed using ROBUSTC have matched analytical calculations for these test problems. 

Two conference papers [6,7] were written describing results in this area. 

Further progress was made in extending the approach to accommodate a large number (n = 30) 

of uncertain parameters. The modification to the approach was simply a "vectorizing" of the 

variation polynomial algorithm, making the algorithms more computationally efficient. The 

method does have a drawback in that for the first pass through the problem the determinant of a 

matrix must be calculated 2" times. This only has to be performed once, at the beginning. This 
-3- 
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feature of the variation polynomial algorithm does make the analysis of high dimensional problems 

CPU intensive. 

The robustness analysis tools and experience developed under this AFOSR program have been 

transitioned to MDC's 4th Generation Escape System program, Contract No. F33615-92-C-2290. 

This joint Air Force/Navy program will flight test a new ejection seat at Holloman AFB during 

1996. The flight test program has 14 launches planned from a rocket sled with a F-16 forebody. 

These robustness analysis tools have been integral to the design and analysis of the seat's flight 

control system. These tools are used to assess the sensitivity of the ejection seat to uncertain mass 

parameters and uncertain aerodynamics. This is of critical concern in the ejection seat problem 

because the seat's flight control system must accommodate crew members ranging from the 95% 

male to the 5% female (this changes both the mass properties and aerodynamic characteristics). 

This technology was further disseminated to Navy and Air Force laboratory experts (and MDC 

engineers) through a two day flight control design workshop held in St. Louis, November 4-5, 

1993. This intensive workshop presented key aspects of MDC's optimal control design 

methodology and robustness analysis process and tools. This workshop received high praise from 

the participants and MDC management. The presenters (Kevin Wise, Rowena Eberhardt, Joe 

Brinker, Mike Sharp) received MDC's New Aircraft and Missile Product (NAMP) Division 

Leading Edge Award. 

1.2 Organization of the Report 

Section 2 presents nonlinear //«, optimal control theory and missile autopilot design results. 

The missile simulation results presented here use nonlinear aerodynamics and have not been 

published previously. (Previous papers published preliminary results based upon linear 

aerodynamics with nonlinear dynamics.) Software for the successive approximation solution 

approach and documentation are contained in the appendices. Each chapter contains at its end the 

references used in the chapter. 

Section 3 details the development of H^ sliding mode controllers for missile autopilots. A 

complete derivation of the algorithms for developing a missile autopilot is presented. Simulation 

results for an agile missile maneuver are also presented. 

Section 4 presents the research in developing nonconservative robustness analysis algorithms. 

The algorithms and application results are presented. 
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2 Agile Missile Flight Control Using Nonlinear Hoo 

Consider the nonlinear system modeled by the equations of the form 

x = f(x) + gj(x)u + g2(x)w 2 ^ 

z = h(x) + dj(x)u + d2(x)w 

The first equation describes a plant with state x, defined on a neighborhood X of the origin in R 
with control input u e Rm and subject to a set of exogenous input variables w e Rr which includes 
commands to be tracked and/or disturbances to be rejected. The second equation defines the 

regulated variables z e Rs which may include tracking errors, for instance the difference between 

the actual plant output and its desired reference behavior, expressed as a function of some of the 

exogenous variables w, as well as a cost of the input u needed to achieve the prescribed control 
goal. The mappings/(x), gt(x), h(x), dt(x), in Eq. (2.1) are smooth mappings defined in a 

neighborhood of the origin in Rn. Also, it is assumed that f(0) = 0 and h(0) = 0. 

The purpose of the control is two fold: to achieve closed loop stability and to attenuate the 
influence of the exogenous input w on the regulated variable z. A controller that locally 
asymptotically stabilizes the equilibrium x = 0 of the closed loop system is said to be an admissible 
controller. The requirement of disturbance attenuation may be dealt with in several different 

manners, depending on the specific class of exogenous signals to be considered and/or the 
performance criteria chosen to evaluate the regulated variables. The following characterization 
taken from [93] is considered here. Given a positive real number 7, it is said that the exogenous 

signals are locally attenuated by 7 if there exists a neighborhood U of the point x = 0 such that for 

every T > 0 and for every piece wise continuous function w:[0,7] -» Rr for which the initial state 

x(0) = 0 remains in U for all t e [0,T], the response z:[0,T] -»Rs of Eq. (2.1) satisfies 

T T 

jzT(t)z(r)dr<r2j 
0 0 

1 1 

jzT(r)z(i:)dt< y2 jwT(-c)w(t)dr (2-2) 

The problem of local disturbance attenuation with internal stability is to find an admissible 

controller yielding local attenuation of the exogenous inputs. 

The state space solution of linear Hx optimal control problems can be found in [94]. This 
same problem of reducing the H^ norm of a closed loop system has been viewed as a two person, 

zero sum, differential game in [95], where the solution is related to certain algebraic Riccati 
equations.  This approach, for nonlinear systems has been pursued in [96] (also in [95]). For 
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nonlinear systems the Riccati equation is replaced with a particular Hamilton-Jacobi equation 

known as the Isaacs equations ([97], p. 67, Eq. (4.2.1)). The problem of disturbance attenuation 

in nonlinear systems requires the solution of the Hamilton-Jacobi-Isaacs (HJI) equation, van der 

Schaft [91] addresses this issue and shows that if the linearized system (at an equilibrium point) is 

such that the linear H^ optimal control exists, then the HJI equation is solvable (locally) and the 

corresponding state feedback solution has the desired stabilizing properties. 

This problem of disturbance attenuation in nonlinear systems is applied here to an agile missile 

flight control problem. A state feedback control is constructed to control the missile in performing 

a high angle-of-attack maneuver in order to intercept a target in the rear hemisphere. The nonlinear 
Hx optimal control is found by solving the HJI equation (locally) by transforming the partial 

differential equation into a two point boundary value problem (TPBVP) using the method of 

characteristics, and approximating the integral solution of the TPBVP using successive 

approximations. The next section details this solution approach, followed by its application to the 

missile flight control problem. Appendix A of this report contains documentation for the 

FORTRAN software implementation of our solution approach. 

2.1 Approximate Solution of the HJI Equation 

Consider the problem of regulating the state x to x=0 by means of a state feedback control law 

u = u(x). The design model is given by Eq. (2.1). 

The HJI partial differential equation (PDE) can be expressed as 

V*xf + hTh- 
hivl +din 2 

h2v. 
x 
*T 
x + d2h 

R- 
hlv*x   +djh 

JglVl   +d2h 
= 0 (2.3) 

where the dependency on x has been dropped to shorten the expression, and 

R = 
dj(x)d1(x)       dj(x)d2(x) 

\_dl(x)d1(x)   dT
2(x)d2(x)-y2l 

The solution approach used here forms the nonlinear Hx control law around a gain scheduled 

linear H^ solution, based upon the linearized dynamics, and then adds to the linear control law 

based upon an approximate solution to the HJI PDE Eq. (2.3) using the method of successive 

approximations. This represents a new approach to solving HJI PDE's. 

Equation (2.3) can be written as 
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o = hTh- hTSR-1sTh+v*x(f- arWh) - ivUurWv? (2.4) 

where B = [gj(x)   g2(x)], S = [dj(x)   d2(x)], and y in R results from a linear H„ design 

using the Hnearized dynamics about x = 0. 

The state feedback control is given by 

u = [1   oirir1^iBTvf+SThj (2-5) 

where the Lyapunov function V*(x) must satisfy the HJIPDE, Eq. (2.3). 

An important special case of the nonlinear dynamics, Eq. (2.1), useful in aerospace 
applications is where the nonlinearities are confined only to fix). For this case 

h(x) = Cx,   g1(x) = G1,   g2(x) = G2,   d1{x) = D1,   d2(x) = D2 (2.6) 

The nonlinearities in f(x) are modeled as 

f(x) = Ax + Af(x) (2-7) 

where Af(x) = 0(x2). 

The solution to the linear H» problem is obtained from the following algebraic Riccati equation 

(ARE) 

XÄ + ÄTX + Q + XRX = 0 (2-8) 

where 

B = [Gj    G2],      S = [Dj   D2] 

Q = CT[l-SR~1ST)c,    R = -BR~1BT 

Ä = A-BR~1STC 

The solution approach used here considers the nonlinearities Af(x) as generating a departure 

from the linearized Hx solution. Therefore, the Lyapunov function V(x) is expressed as 

V{x) = xTXx + AV{x) (2-9) 
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where X is the solution to Eq. (2.8).   AV(x) will be o(x4} and xTXx will be the Lyapunov 

function for the linearized solution. Substituting Eq. (2.9) into the HJIPDE Eq. (2.4) and using 

Eqs. (2.6) through (2.8) the following first order PDE is obtained. 

0 = 2x1XAf + AVx\[A + lU + RXy + Af + ±AVrRAVl (2.10) 

Notice that Af(x) = 0 implies that AVX = 0. Stability of the linearized solution implies that all of 

the eigenvalues of the Ä + RX are in the left half plane. 

Equation (2.10) is solved by the method of characteristics [Ford9, pp. 230-231].   The 

formulas from Ford9 apply to a PDE of first order in one dependent variable (£ = AV) and n 

independent variables (xj   •••   xn). Let p = AVx , i.e. 

Pl = 
dAV 

dxi Pn = 
dAV 

dx„ 

The general first order PDE has the form 

e(x1,~-,xn,p1,---,pn,%) = 0 

The characteristic strips satisfy the following 2/j+l differential equations 

dx( 
-0Pi 

dpi . 
dt ' *-*« -e^pt 

d$. 
dt 

= ePlPl+-+ePr Pn 

To further simplify notation define F = Ä + RX. Equation (2.12) becomes 

6(x, p, S) = 2xTXAf + PT
\FX + Af] + pT ^p = 0 

The characteristic equations for Eq. (2.14) are (with x replaced by z) 

= Fz + ±Rp + Af(z) 
dz_ 

dt 

^dd(z,p,^T 

dp 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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dp=  (de(z,p,Z)Y    dO(z,p,S) 
dt      {      dz      ) dt, 

= -FTp - 2AfTzXz - Afjp - 2XAf(z) 

dt dp 
\p = p1Fz + p1Af(z)-±/Rp 

where the independent variable t need not correspond to time. The last scalar equation in Eq. 
(2.15) need not be solved unless the term AV (Eq. (2.9)) is needed in computing the Lyapunov 

function. 

Notice that an integral of Eq. (2.15) is 

pT-p + [Fz + Af(z)f p + 2zTXAf(z) = 0 (2.16) 

The characteristic equations Eq. (2.15) can be put into integral form in order to attempt a 
successive approximation solution procedure. The state and costate equations from Eq. (2.15) can 

be written as 

l>(0. 
F    lR 

0    -FT Pit) 
' 4f(z(0) " 
q{z(t),p(t)) 

(2.17) 

where 

q{z,p) ■■ -2AfI(z)Xz - Afi (z)p - 2XAf(z) 

and Af is defined in Eq. (2.7). The integral of Eq. (2.17) is 

z(t) 

Pit) 
= e*~ 

0   -FT z(0) 

Piß) 
\\e^ 

0 

F    jR 

0   -FT XrAf{z) 

qiz>p) 
dt 

(2.18) 

(2.19) 

Define 

0(t) = 

\P      2*1 
<f>nit)   <t>nit)' 0   -FT 

0        022(0. 
(2.20) 
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Differentiating the 0y yields 

h2(t) = F<t>12(t) + JR<l>22(t) (2-21> 

i>22(t) = -FT<l>22(t) 

with initial conditions of <pn{0) = I.QniO) = 0,<t>22(0) = I- Solving for the <j>tj yields 

(2.22) 

hiit)-- -eFt 

022(0 = = e-*T< 

Qnit)-- -e
h\e-tx{Ee-pTxdx 

0 

stitutini I these into Eq. (2.19) results in 

t 

z(0 = hi(t>o + <Pl2(t)P0+j[4>u(t - tW(t)+<t>n(t ~ ^)?(T)]dT (2.23) 
0 

t 

Pit) = <!>22{t)P0+\<t>22(t- r)q(r)dr 
0 

where the dependency of #(•) and Af(») on  z and p has been dropped for notational 

convenience. Solving for p0 and substituting this into the z(t) expression yields 

t t 

<t) = <pn(t)z0 + 072(O022"
7
(OP(O+]Uu(t - *M/(*)+{<Pnit - T) - <ffi2(t)h2~1(t)h2(t - *)}?(*)H 

o c 
(2.24) 

Define 

J(t) = <t>l2(t)h2~1(t) 

= /'je-^^e-^^^=j/(f-7)(^)/r^TW (2-25) 

0 0 

Let £ = r-T. Then 
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J(t) = je^(lR)e^dC (2.26) 

and 

J = J<iRe*T<F-T ' -p\e^iRe^dCF-T 

10 0 (2.27) 

= eh^tF-T-lRF-T-FJF-T 

Note that the integral J(°o) must exist since F is a stable matrix. Several useful relationships from 

Eq. (2.27) are: 

f-«W' 
— = FJ + JFT+±R 
dt 2 

(2.28) 

J(0) = 0 

üT. 
FJ + JFT+±R + eFt(-±R)eF ' = 0 

FJ{oo) + j(oo)pT =-lR 

In order to simplify the integral equation, Eq. (2.24), define the last term in the integral of Eq. 

(2.24) inside the { } as 

K(t,t) = <p12(t-r)-<p12(t)(p22 V) 

Using Eq. (2.21), and differentiating, we have 

^ = F^2(r-T)+^022(r-T)-[F^2(r) + ^022(r)]^2-
;(T) 

= F[<t>12(t- T)- 072(O022"7(*)] + lR[hl(t - T) - 022(O022"7(*)] 

= FK{t,T) 

At f = 0 we have 

(2.29) 

(2.30) 
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K(0,t) = <t>12(-T)- 0i2(O)022-
y(T) = (t>12(-r) 

-T Tt 

= e-^je-F^Re-F^dC 
0 

= -e-^)eF^{RefT^dß 
0 

(2.31) 

= -e-F*J(T) 

Using Eq. (2.30) and (2.31), K(t, T) can be expressed as 

K(t,t) = eFtK(0,T;) 

= _/
(
'-

T)
/(T) (2.32) 

= -<pn{t-x)J{x) 

By differentiating Eq. (2.32), Eq. (2.30) is obtained. Substituting these expressions into the z{t) 

equation in Eq. (2.23) results in 

z(t) = <t>n(t)z(0) + J(t)p(t) + ]<pn(t- r){Af(t)-J(r)q(t)}dt 
0 

. t 
= eFtz(0) + J(t)p(t) + eFtje-Fr{Af(<u) - J(t)q(T)}dt 

0 

To solve for the costate p(t) in Eq. (2.23) we have 

(2.33) 

?r.f,  £T„ 
p(t) = e~F lp{0) + e-F l\eF rq(x)dr (2.34) 

0 

Multiplying by e      results in 

eF tp(t) = p(0) + \eF rq(r)dt (2.35) 
0 

The boundary condition for p(t) at » is known. Taking the limit as t —> °° yields 

oo 

0 . p(co) = p(0) + jeFTzq(x)d<u (2.36) 

0 
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Solving for p(0), using the fact that p(t) -> 0 as t -» °°, yields 

p(0) = -]efTrq(T)dT (2-37) 
0 

Substituting this into Eq. (2.34) yields the following expression for p(t): 

p{t) = e-fT'p(0) + e-?Tt)epTxq{T)dx 

(2.38) = -e~fT- 

0 

t 

\eF Tq(r)dt-jeF rq(r)dr 
10 0 

vT, r i?r„ 
= -e-F'<leF Tq(T)dr 

t 

The resulting integral expressions for the characteristic equations in Eqs. (2.17) are 

z(t) = eFtz(0) + J(t)p(t) + eFt]e-Fr{Af{z(T)) - J(t)q{z(x), p{r))}dt 
0 

5T.7   *T 
p{t) = -e-F '\eF Tq(z(r),p(r))dr (2-39) 

t 

Solutions to these equations thus define a curve between (x(0),p(0)){x(0),p(0)) and the 

equilibrium point (0,0). It is easy to verify (by differentiating) that these expressions satisfy Eqs. 
(2.17). Note that due to the stability of F, the integrals in Eq. (2.39) are defined for only mild 
restrictions on Af(x). 

The successive approximation procedure used to solve the integral expressions in Eq. (2.39) 

begins with the solution of the linearized equations 

z(0)(t) = eFtz p.,«) 

P(0)(t) = 0 

where the superscript on z and p denote the order of the approximation. These are then 

substituted into the right hand side of Eq. (2.39) to evaluate the next approximation, and so on. 
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After an acceptable degree of approximation has been achieved, the control is generated by 
evaluating p(t) at t = 0. More precisely, the procedure is as follows. 

To compute the state feedback control, Eq. (2.5), AVx(x) is needed. To obtain AVx(x) the 

following three step process is used. 

1). Set the initial condition z(0) in Eq. (2.39) to the current value of x . 

2) Generate the desired degree of approximation, starting with Eq. (2.40). 

3) Evaluate p(0) and equate AVx(x) to p(0). 

From Eq. (2.5) the control is then given by 

u(x) = [l   0]{-R-
1
)UB

T
{2XX + AVI) + S

T
CX} (2.41) 

Local Contraction Mapping 

In this section we prove that the successive approximation solution procedure provides a local 
contraction mapping. This is important in proving the existence and uniqueness of the solution. 

Define 

w(0 = 
Pit). 

q[w(t)] = -2AfJ[z(t)]Xz(t) - AfJ[z(t)]p(t) - 2XAf[z(tj\ 

J{t) = \e^^RepTUx = ehpepTt-p 
0 

where p satisfies the Lyapunov equation Fp + pF   =jR- Let 

s[w(t)] = Af[z(t)] + pq[w(t)] 

Note that q[w] and s[w] are second order or higher in w since Af[w] is second order or higher. 

The integral equations (2.39) can be rewritten using the above definitions as 
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z{t) = ehx - 7(0j/T(T-'^[w(T)]^+]e^-^s[w(r)]dt- \eptpepT'q[w{x)}dx 

t 0 o 

Let Pw be the successive approximation mapping 

(Pw)(t). 

ehx - J(t) ]eF^-tk[w(r))dt+\e^-x)s{w{x)\dx- ]e^pe^rq[w(t)]dr 
t 0 o 

-J/r(T-f)<?[w(T)]^ 

It is shown that this is a contraction in a sufficiently small neighborhood of the equilibrium 

[z = 0,   p = 0], as follows. 

Let H|B denote the Euclidean norm in 9t".    Let Hc be the norm on C n[0,<*>), i.e. 

||w(»)|L=   sup llvvML . The induced matrix norm of /' is /'   = eXt where X is the real part 
"      "C    t40%f      "2n i 
of the rightmost eigenvalue of F. Due to the stability of F, X<0. The induced matrix norm of 

J{t) satisfies 

m*J^MK1/'W«2AHH 
(l-e2h 

-X 
U 

Now, define 

Br = {yeX2n:\\y\\<r} 

w0(t) = eFtx 

0 

Sr = {*(•) 6 C2n[0,o°):\\w(-)- w0(-)\\c < r] 

Let wj{') and w2(«) be arbitrary elements of Sr; then wj{t) and w2{t) lie in the ball Br for all 

te[0,°o). 
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(/VJXO-^XO' 

-/(Oj/r(T-'^k(T)]-?[v^ 
t o 

0 

Taking the norm on both sides yields 

^[(P^ )(r) - (/>w2)(r)|| < ||^(r)||,.TlU^tT-'>| ^||w, (r) - w2(r)||2n dr+JL^<'"^| ^flw, (r) - w2(r)||2nrfr 
(II Hi 0" "• 

Oil      Hi        II Hi ill Hi 

where Ks and K^ are Lipschitz constants in ßr for $(•) and q('), respectively. These constants 

are finite due to the second order nature of s(*) and <?(•). Evaluating the matrix norms and using 

sup norms on wj(t) - W2(t) results in 

ä + 7-e & 
-A K,

? + 'i^r^}lw7(«)-W20 

 7\\R\\ +■   „.«-„• 2A2» «    -A,ri" ^ + _A^ IK (*)-w2 Wlc 

Since the expression on the right hand side does not involve t, 

K^X«) - (Py^Hc * pr|w;(.) - w2(.)||c 

where 

Pr=\  T\\
R

\\   +     „ urn- 
i..-.^ i ^+7J^>° 

The parameter pr can be made less than one by choosing r small enough because of the 2nd order 

nature and Lipschitz continuity of s{*) and <?(•). Therefore, P is a contraction mapping on Sr for 

r>0 sufficiently small. 

To show that P maps Sr into itself for r sufficiently small, let w(*) e Sr. Then 
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(Pw)(t)-w0(t) = 

-7(0j/T(T-f)(^Wi:)]-4vv0(r)]VT+j/(f-T)Hvv(T)]-5[vv0(r)])dr- 

t o 

\ePtpepTx(q[w{x)]-q[w0(x)])dx 

0 

-j/T(T-0Ww(i:)]-^[w0(T)])^ 
t 

-/(0j/r(TAH(T)]^4^ 
t 0 0 

-yT^a[W0(v)]dT 

Taking norms results in 

D 7 7 

since 

<7 /'* <Kr eFtx Hwo(t)ln * 

and similarly for .s[wfl(r)]. This results in 

|(/V)(.)- w0(-)\\c <pr|w(.)- w0(.)|c 

^ r/'K * ^Wn 

/? 
^7^+^+IPl^ 

where the right hand side can be made as small as desired by choosing r small. 

2.2 Missile Nonlinear Hoo Optimal Control 

This section presents the application of nonlinear Hx state feedback control to the agile missile 

flight control problem, and outlines the algorithms that are used in the successive approximation 
solution of the HJI equation. Only a pitch-plane autopilot is considered. The autopilot will 
command angle-of-attack (AOA) by thrust vectoring and deflecting the aerodynamic control 

surfaces. 
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The missile autopilot command (the control input) can be separated into linear and nonlinear 

components as 

" = ULINEAR + uNONUNEAR 

where «LflVEAÄ results from a gain scheduled linear Hx state feedback design, and u^oNLINEAR 

is proportional to AVx(x) which is obtained by solving the HJIPDE. The state feedback control 

is u = -K(x)x. The feedback gains K(x) are calculated at a very fast sample rate (1000 Hz). 

Since this is proportional state feedback, the digital implementation has the identical form 

u = -K(x)x. 

The remainder of this section describes the missile's pitch plane dynamics, the design model 

for the linear H^ state feedback design (U[JNEAR)> 
and tne calculation of AVx(x) and 

uNONLINEAR- 

Missile Dynamics 

The missile's rigid body pitch-plane short period dynamics are described by 

ä = T*-{cos(a)(Gz + ZA+Tz)-sin(a)(Gx + XA +TX)\ + q (2.42) 

q = MA + Mj 

where a is the angle-of-attack, q is the pitch rate, and 

Gz=gcos(d);Gx = gsin(0) 

ZA=Zaa + Z5Se 

XA=X0+Xaa + X58e 

MA = M0 + Maa + Ms8e + Mqq 

Tz = -T/msin(&r);Tx = T/mcos{ST) 

Mj — —Mjyc sin{Sj) 

where (GX,GZ) models gravity, (XA,ZA) models normalized aerodynamic accelerations, MA 

models normalized aerodynamic pitching moment, (TX,TZ) models thrust forces normalized with 

respect to the mass, and MT models the pitching moment produced by the thrust vectoring 

normalized by the pitch inertia. The variable 5e models the pitch fin angle and ST models the 

pitch thrust vector angle. 
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In addition to the above dynamics the integrated aerodynamic/thrust vector control10 (TVC) 
system has a common actuator that drives both 8T and the aerodynamic control surfaces 8e 

(8T =li8e). These actuator dynamics are modeled using the following second order model: 

ö + 2Ccoö + Q)2ö = (02öc 

Calculation of ML/N£Aä 

The autopilot design approach used here is similar to that for linear H^ control design1 . The 

missile's dynamics are augmented with weighting filter states that will shape the sensitivity, 

complementary sensitivity, and control activity frequency responses. The design objectives are to 

shape the sensitivity S(s) in order to follow AOA commands, to shape the complementary 

sensitivity T(s) to roll off the plant, and to penalize the control activity C(s). 

The autopilot design requires the calculation of the "trim" state or equilibrium. This calculation 

was performed using the TRIM function from MATRIXx which operates directly on the nonlinear 

simulation. Trim is defined as ä = q = 8 = 8 = 0. The output of the TRIM function was the 

steady state pitch rate q and actuator command 8C for a specified AOA, Mach, altitude, and center 

of gravity. 

The linearized missile dynamics about the trim point are modeled in the following state space 

model: 

a Za 1 zS 
0 

q Ma Mq MS 0 
6 0 0 0 1 
8] 0 0 -CD2 -2£fl>_ 

"a" r ° i q 0 
8 + 0 

_8_ [yj 
B„ 

where 

=  _ da 

'a~ da 

~     da 

TRIM ö0 TRIM 

Ma    da TRIM 
M  =& 

'    q     dq 
M8 = 

TRIM 

dq_ 

d8 TRIM 

The design objectives were realized by shaping the sensitivity S(s) and complementary 

sensitivity T(s) with weighting filters, and by penalizing the control activity C(s) = Wc8. The 

design of these weighting filters influences the bandwidth of the autopilot. To design these filters, 
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the filter coefficients were related to their 0 dB crossover frequency, denoted coc. As coc 

increases, the bandwidth increases as well as the amount of control activity. 

The sensitivity weighting filter Ws(s) is given by 

*,(,)_ £$s±a 
s 

The low frequency behavior of W$(s) demonstrates integrator characteristics in order to satisfy the 

AOA command tracking objective. The gain K was chosen such that the magnitude of Ws{jo)) 

was equal to -3 dB at (Oc. The zero was placed at coc. 

The complementary sensitivity weighting filter Wj(s) is given by 

In designing WT(s) an comin was selected, tn = 1 / co„ün computed, and then the gain K was 

selected such that the magnitude of Wj{j(o) was 0 dB at coc. The denominator time constant was 

then arbitrarily selected to maintain a proper transfer function. 

The weighting filters used in this study were: 

„. , v    14.95(0.04735 + 1) ws CO =  
s 

0.444(0.0401^ + 1) 
WT(s) = —± —- 1KJ (0.00b + 1) 

Wc(s) = 0.01 

These weighting filters were not scheduled with flight condition. State space models were created 
for  WS-(AS,BS,CS,DS), and similarly,  WT-(AT,BT,CT,DT), in order to connect the 

weighting filters with the missile dynamics. 

The linear Hx design model is given by 

x = Ax + G\u + G2W 

z = Cx + Diu + D2W 

which is terms of the missile dynamics and weighting filters is 

-21- 

McDonnell Douglas Corporation 



Report MDC95P0058 Nonlinear Control of Missiles 

x 

ZS 
ZT 

*c. 

r AP 0 0 
BsCp As 0 
BfCp 0 AT 

X 
BP ~o" 

*S + -BsDp öc + "s 
L
X

T] BTDp u 
ar 

<h 

DsCp     CS    0 
DrCp      0    CT 

WcCcAp    0     0 

x 
*S 
xTj 

DSDp 

DP 
WcCcBp 

A 

Using this model the ARE in Eq. (2.8) is solved to form the linear control at each design point in 

the flight envelope. The linear gain schedule was computed at the following design points: 

AOA Mach Alt CG 
(deg) (Kft) 

-100 0.1 0 0 
-90 0.6 10 1 
-80 0.8 35 
-70 1.0 
-60 1.15 
-50 1.5 
-40 ao 
-30 3.0 
-20 5.0 
-10 
-5 
0 
5 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

At each of these design points a /-iteration was performed to determine the level of disturbnace 

rejection. At each of these design points uUNEAR is given by 

»LINEAR =[1    ti{-Brl\BTX + STc)x 

= -Kx 

Calculation of UNONUNEAR 

The state vector for this application is given by 

x = \a,q,8,8,ws,wT^  -xjRIM 
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where the subscript "TRIM" refers to the equilibrium value, and the states ws and wT are from 

first order weighting filters used in the linear //«, design. This definition of the state vector 

satisfies the requirement that f(0) = 0. 

The elements of f(x) in Eq. (2.1) are all linear except the first element, which is 

fi = 4—sina\X0 + Xaa + Xs 8e + —) +cosa\Zaa + Z5 8e +—p8e + q   (2.43) 

where 8j=p8e.   Let saT and caT denote the sinaTRIM and cosaTRIM, respectively. 

Expanding fj to third order terms results in 

/l = T-[-sccTXT + caTZT] + qTRIM (2.44) 

+ \fc[-saT(xa +ZT)-cccT{XT +Za)]Xl +x2 +^^-5«^ +caT[z5e +-/ij x3 

+±[-caT(xa+±ZT) + saT(±XT-Za)xT]xf +^ -caTX6g -saT\ZSe +^/xj xxx3 

+ \fc[lsMxa+lZT) + icaT{XT-3Za)]xl+J- \saTX§e -\caT[z5e +^) fal 

T T where XT = X0 + XaaT + X5 8T + — and ZT = ZaaT + Z8 8T+ —fJ.8T. The first line in this 

expansion adds to zero because of the definition of trim. The next three lines are linear in the 
states, and will be denoted as Ajjxj, A^X2, and Aj3x3, respectively.  The remaining terms 

represent the higher order nonlinearities (0(x2)) and are up to third order. These terms define 
Afi(x). Rewriting these terms in a more compact form results in 

2 3 2 
4fl(x) — cl*l + C2X1X3 + C3X1 + C4X1X3 

The vector Af(x) is given by 

(2.45) 

Af(x) = [Af1(x),0,0,0,0,0]1 (2.46) 

and 
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Afl(x) = 

2c1x1 + c2x3^3c3x
2

1+2c4x1x3   0 0 0 0 0 
0 0 0 0 0 0 

■2 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

C2X\ + C4X1 

0 

0 

0 0   0   0   0   0 

(2.47) 

The next step is to compute the nonlinear part of the control, AVX (x).    Only the first 

approximation is computed. Starting with the integral equations, Eq. (2.39) is 

AVT
x(x) = -^eFz[-2XAf{z(r)) - 2AfTx{z{x))Xz{x)]di: (2.48) 

where the stable matrix F and the positive definite symmetric matrix X are provided by an Hx 

design for the linear system, and z(t) is the linear solution of the characteristic equations 

z(t) = eFtx.   In this application F has distinct eigenvalues, so that if F is diagonalized as 

F = UAW' then 

eFt=UeArWT = Jjuiwle TM (2.49) 

J'T 
Yswiui 

i=l 

TM 
i=l 

where the ut are right eigenvectors, wt left eigenvectors, and A = diag[^t] is the diagonal matrix 
T 

of eigenvalues of F. Using Eq. (2.49), the state x is transformed using v = W x. This gives 

i=7 

(2.50) 

and 

Xz = f,yie
XiTXui. 

i=l 

(2.51) 

The nonlinear expressions for Af(z) and AfTx(z) can be written using Eqs. (2.50) and (2.51) as 

the following linear sums of the eigenvalues: 
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n X;T 

n        . 
z3 = 5>/ jT»3j 

j=l 

zi = L Z^A*       ' ";;";* 
j=ik=i 

n   n Uj+hY ziz3 = 2, Lyjy^     ' ujju3k 
j=lk=l 

?       V V V (^i+^k+^l)^ n = 2, 2,L>v>w ^ijmuu 
j=lk=ll=l (2.52) 

ziz3 = LLz,yjykyie »I^IMI 
j=ik=n=i 

to obtain 

Af = ejg zejz + ejh zefzejz (2.53) 

4/f = (eigT + gej)zej + \2efi + hej)zejzej 

where 

ej = (1,0,0,0,0,0) 

gT=(Cl,0,c2,0,0,0) (2.54) 

hT= {c3,0,c4,0,0,0) 

Inserting these and Eq. (2.49) into Eq. (2.48) results in 

oo 

AVT
x(x) = wl[eAt2u(elg

T + ge{)eAr(yelXU)eAz +eAT(2UTXelg
Tu)eAT(ye[u)eAt + 

0 

eA*2UT(2ein
T + hef)UeA*(ye!xu)eA*(ye{u)eA* + eM(2UTXelh

Tu)eAz(yefu)eAz(yelu)eAt]dty 

(2.55) 

This can be integrated using the identities 
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J L Jy " hi + Aj + A 

PjkQkj    ( (xi+Xj+xk)b _ (ki+Xj+xky (2.56) 

JL Jy" ^ z   Äj + Ay + A^ + A 

to obtain 

AVT
x(x) = WMy (2.57) 

where 

^=-1^-22^^ (2.58) 

k   I 

with 

c(4)_ 
[n^Xe^ej). + 2(uTXe1)yh)k(u

Te1\(uTe1)j 

A/ + A j + A.£ + A/ 
(2.59) 

where 

*=AuTeiWh)MuThWei\- 
Defining T^ and T^ arrays by 

i 

T{4)_YwS{4) 
'jkl ~ Lwibijkl 

(2.60) 

(2.61) 

results in a polynomial expression in the transformed states y. The gradient of the Lyapunov 
T function AVi (x) becomes 
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j   k j   k    l 

The coefficients T$ form a 6 x 6 x 6 array and T$ a6x6x6x6 array, and can be calculated off- 

line. The nonlinear contribution to the control u^oNLINEAR is given by 

"NONLINEAR =[1   O^-R-^AV^x) 

2.3 Simulation Results 

This section presents simulation results using the nonlinear H^ control law for agile missile 

flight control. In forming the nonlinear Hx control law several assumptions were introduced in 

modeling the missile nonlinearities. It is important to present these modeling assumptions so that it 

is clear what nonlinearities are present in this problem. 

In the earlier versions of this research [Ref. 4 in Chapter 1], we modeled the missile's 

aerodynamics as a linear function that was constant with angle of attack. In the results presented 

here this assumption has been removed, and the missile's aerodynamics are nonlinear. 

The TVC deflection sin(8jyC) in the ä equation has been replaced by fiSe. This linearity 

assumption for the actuator deflection is appropriate here because the TVC actuator is mechanically 

limited to 10 degrees deflection. The actual TVC flow angle does not deflect the same amount as 

the nozzle angle due to losses in the nozzle. The losses further limit the actual vector angle, 

reducing it to approximately 8.5 degrees (in this application). Over this limited range the 
sin(SjyC) is linear. 

The nonlinearity /; described in Eq. (2.43) is modeled using a third order polynomial. This 

additional modeling assumption adequately captures the nonlinearities introduced by the sin(a) 

and cos(a). Modeling the nonlinearities using polynomials is an important aspect of our solution 

approach. The polynomial models make it significantly easier to solve the integral expressions for 

the characteristic equations. 

The aerodynamic data used in this study was obtained from high angle-of-attack wind tunnel 

measurements in the McDonnell Douglas Polysonic Wind Tunnel in St. Louis using a 1/4 scale 

model. Figure 2.1 illustrates the wind tunnel test hardware. 

-27- 

McDonnell Douglas Corporation 



Report MDC95P0058 Nonlinear Control of Missiles 

Installation Drawings 
MDC Has Built A New High AOA Support Mechanism 

AOA Up To 90° In The MDA Polysonic Wind Tunnel (PSWT) 

Includes Roll Control Pod 

'//////////////////////////^^^^ 

YA//////////. 

Figure 2.1   Wind tunnel test hardware. 
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Figure 2.2 shows the pitching moment coefficient as a function of angle of attack at Mach 

numbers of 0.45, 0.85, and 1.2. As the velocity of the missile changes the aerodynamics 

characteristics also change. Note that at Mach 0.45 the missile becomes unstable at approximately 

30° AOA. As the velocity increases this transition region moves to lower AOA's. 

Figure 2.3 illustrates the effect of aerodynamic fin deflections on the pitching moment. At low 

AOA's the fins provide adequate control power. As AOA increases, the aerodynamic controls are 

no longer effective. Note that there are sign reversals in the fin stability derivatives at the higher 

AOA's. By using thrust vectoring the problem of sign reversals at high AOAs is eliminated. 

The missile autopilot commands an actuator that deflects the TVC nozzle. For the IATVC [10] 

actuator design used in this study (common actuator drives both the TVC nozzle and aerodynamic 

fins), the aerodynamic fins deflect 3 times the amount of the TVC nozzle. 

The actuator command contains a linear part, from the gain scheduled linear //TO design, and a 

nonlinear part that is proportional to AVX (x). Only the first approximation is computed in the 

calculation of AV^(x). Computing the first approximation requires solving the integral in Eq. 

(2.48), where the stable matrix F and the positive definite symmetric matrix X are provided by 

the gain scheduled linear Hx design (for the linearized system), and z(t) is the linear solution of 
Ft the characteristic equations z(t) = e   x. 

In this application F has distinct eigenvalues, so that if F is diagonalized as F = UAW , then 

the integral expression in Eq. (2.48) can be solved by representing the matrix exponential with its 

modal expansion. This makes this integral expression a combination of polynomials weighted by 

exponentials, which are easy to integrate. 

The gradient of the Lyapunov function AV^(x) is solved for using Eq. (2.62). Figure 2.4 

illustrates the calculations used in computing AVx(x). FORTRAN subroutines were developed to 

implement these algorithms. (Documentation for this code is contained in Appendix A, with the 

software given in Appendix B.) Note that a linear gain schedule is calculated off-line and stored 

for use in computing the linear part of the control law. 

Figure 2.5 shows our MATRKx implementation of the nonlinear Hx control law. The super 

block has 8 inputs (a, altitude, Mach number, a command, pitch rate, TVC nozzle deflection, 

TVC nozzle rate, and fuel ratio (err: l=full, 0=empty)). The fuel ratio is used to schedule the gains 

with changes in the center of gravity.   The control is the TVC nozzle deflection command 

computed by the autopilot.   This command has 3 terms:The trim deflection; the linear H^ 
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Figure 2.2 Pitching moment coefficient as a function of angle of attack. 
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contribution; and the nonlinear //<*, contribution. The trim deflection is calculated in the Trim 

Scheduler superblock. The linear Hx contribution is calculated by looking up the linear gains in 

the ffinf Alp IATVC Gain Scheduler superblock, shown in the figure. The nonlinear H^ software 

described in Figure 2.4 is implemented in the User Code block User 001. 

Figure 2.6 shows an animation of the simulation results. The figure shows an F-15 launch of 
the agile missile with missile trajectories for a 45 and 60 degree a command. The simulation stops 

when the missile's heading has changed by 180 degrees. The goal is to perform this heading 

change maneuver as quickly as possible. 

Figure 2.7 shows time histories of important simulation variables. The a response follows the 

command as desired. The actuator time histories are well within the deflection and rate limits for 

the actuator. 

Figure 2.7o shows the contribution to the control made by solving for the nonlinear part 

AVl(x). This contribution is small when compared to the magnitude of the linear control. Since 

the linear gains are scheduled every 10 degrees AOA, the nonlinearities are captured (and 
adequately compensated for) in the linear gain table. This leads to a possible conclusion that if the 
linear design adequately covers the nonlinearities, then the contribution to the control by AVX (x) 

will be small. This is the case here. 
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Figure 2.6 Animation of simulation results. 
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Figure 2.7 (Continued) Time histories of important simulation variables. 
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Figure 2.7 (Continued) Time histories of important simulation variables. 

-39- 

McDonnell Douglas Corporation 



Report MDC95P0058 Nonlinear Control of Missiles 

 -I i j- j - 

CO 

in 
CM 

CM 

s 
•n & 

E 

m 

• j j- -j } -i  

CO 

m 
CM 

c 
(5 a 

CM 

-   CM 

in 

CM CM 

(pej jed PBJ) e)|9px 

CM CO 00 CO * CM CM 
CO O        CM CM W        CM        q 
o o     o     ©     o 

(sdj jed pej) jopejiepyi 

n 
o> 

-o S 
®    3 

■^    JL 

(D 
(0 
c 
o 
a 
w 
o 
cc 
a 
a> 
w 

E o 
< o 
< 

I : : 1 1 1 r" 

0 
   

   
  .

5 
   

   
  1

   
   

  1
.5

   
   

  2
   

   
  2

.5
   

   
  3

 
Ti

m
e 

(s
ec

) 

- 

- 

- 
. 

MIM IM . 

f    . 

<D o>     CM     w     eo     v     <r 
■ ;        r        r        N        N 

(PBJ JBd PBJ) BMd|BX 

CM 
03 
O 

CO o 
CM 

(sdj jed PBJ) b>f 

CO ~ 

o 
< ■n 

CM 

-    CM 

■D 
© 
3 

■o 
a> 

—. ü 
U (0 
en «o 

"i £ 
•<-   2 «J 

E O 

c 
o a 

«*- c 
I in 

o       5» 
c 
o u 
Ü 

H 
Ü 
< 
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Figure 2.7 (Continued) Time histories of important simulation variables. 
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2.4 Conclusions and Future Research 

A solution approach was presented for solving the Hamilton-Jacobi-Isaacs partial differential 
equation that arises in nonlinear Hx optimal control problems. The solution approach using 

successive approximation was applied to a missile flight control problem with six state variables. 

Although somewhat complicated, the state feedback control algorithms are implementable using 

standard software techniques. This solution approach has produced reasonable algorithms for 
solving the nonlinear partial differential equations that arise in the study of nonlinear H^ optimal 

control problems. 

Nonlinear simulation was used to test the algorithms, and resulted in good performance. TVC 

nozzle deflections and rates commanded by the autopilot are well within limits. The angle of attack 

time history tracked the command very well. 

Software for implementing the successive approximation solution procedure was developed 

that can calculate any number of successive approximations (only the first was used in this study). 

This software was documented (Appendix A) and is contained in Appendix B for application to 

other nonlinear control problems. The software can be obtained electronically by contacting the 

author at McDonnell Douglas (wisek@mdcgwy.mdc.com). 

Future research will include a more detailed investigation into the use of gain scheduling to 
account for nonlinearities versus using our nonlinear H^ algorithms. 
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3 Variable Structure Control Of Missiles 

Recent studies have indicated that missile agility can provide a decided air superiority advantage 

when applied to close-in, low speed, high angle of attack, engagement scenarios. However, at 

low dynamic pressures, aerodynamic controls are not effective, and therefore missile agility 

requires some form of alternate control, such as reaction jets or thrust vectoring. The use of 

Reaction Control Valve (RCV) actuators and Thrust Vector Control (TVC) actuators can be 

challenging due to system nonlinearities resulting from hardware limitations. In particular, TVC 

and throttleable solid fuel propellant RCV systems have hard thrust magnitude and thrust rate limits 

as well as other actuator nonlinearities, while low cost RCV actuation may be provided by on-off 

valves which require discontinuous control. 

This research addresses flight control system design for an agile missile with throttleable 

RCVs, with a focus on maximizing performance during an agile turn to the rear hemisphere. A 

pitch rate command autopilot topology was selected for this maneuver. In order to achieve the 

desired performance, the autopilot must be capable of very rapid command following. For a linear 

quadratic performance objective, this criteria requires a small weighting on the control variable, 

often called the "cheap control" optimization problem. 

It is well known that the optimal feedback control for the "cheap control" Linear Quadratic 

Regulator (LQR) problem results in loops with high gain [1]. In this work we examine the "cheap 

control" //«, optimal control problem, and apply the resulting near optimum feedback control to the 

agile missile autopilot design problem. For comparison, the "cheap control" LQR problem is 

reviewed, and the near optimum regulator results are used to design a second missile autopilot for 

comparison. 

In Young et al [2], it is shown that all high-gain systems can be represented as singularly 

perturbed systems, and therefore can be decomposed into slow and fast subsystems. Moreover, 

by the method of Chow and Kokotovic [3], the near optimum LQR design is a composition of the 

slow system regulator and the fast subsystem regulator. An advantage of the Chow and Kokotovic 

approach is that the controller can be designed independent of the singular perturbation parameter 

e, therefore avoiding the problem of solving stiff differential equations. Recent developments [6] 
show that Hoc optimal control problems and Linear Quadratic (LQ) differential games are closely 

related, and thus LQ game theory results can be used to develop worst-case Hx optimal 

controllers. Moreover, in [4], this relationship is extended to develop a method to design worst 

case H«, optimal controllers for singularly perturbed systems.  In [4], Pan and Basar derive 
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conditions under which a composite controller exists and can be constructed independent of the 
singular perturbation parameter e. However, the construction of the best approximate controller is 

more involved than the sum of the slow and fast controllers as in the LQR case. 

3.1 High Gain Feedback Systems With Disturbance Terms 

In this section we extend the results in [2] to show that under the standard assumptions, the 

high gain feedback system with disturbance term can be decomposed into slow and fast 
subsystems, where the fast transient occurs in the range of B0 and the slow motion is confined to 

the nullspace of C2. 

Consider the linear time invariant high gain system of the form 

Xo = AoX0+B0u + DQw 

w = Clx0 (3-1) 

" = gCi^o 

where g is the high gain factor, the state x0 eRn,the control ueRm, and the disturbance 

weRp. Let £ be a small positive scalar such that, e = %, so that as g approaches infinity, e 

approaches zero. By substituting for u and w in Eq. (3.1), and rewriting (3.1) in terms of e, 

results in 

ex0 = (SAQ + BQC2 + £D0Ci )X0 (3-2) 

We now show that if 

rank(B0C2) = rank(C2B0) = m (3-3) 

and if the nonzero eigenvalues of B0C2 have negative real parts 

Re(Xi(B0C2))<0i = l,-,m (3-4) 

then the dynamical behavior of (3.1) is characterized by a fast transient to an 0(e) neighborhood 

of C2XQ =0, followed by a slow motion in this neighborhood. 

where the similarity transformation in Eq. (3.5) is two successive transformations, given by, 
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X = MXQ 

x = Tx 

Nonlinear Control of Missiles 

(3.6) 

The first transformation matrix M is applied to Eq. (3.1), and decouples the high gain control u 

from the first (n - m) states resulting in the system 

Xi = Anxl + Al2x2+Dlw 

x2 = A2\Xi + A22x2 + B2u + D^w 
(3.7) 

where 

MAQM~
1
 = Al A\2 

A2\ ^22, 
MB0=[0 B%] 

QM"1 = [Cn C12]     C2M~l = [C21 C22]     MD0 = [D{ D^f 

Note that the control u only enters into the x2 dynamics. In Weil and Wise [7] we extended this 
approach to include a slow control (not high gain) that enters only into the x\ dynamics. This was 

used to blend aero controls (slow) with RCV controls (fast). 

Next, substitute the feedback control u = gC2M~lx into Eq. (3.7). The transformation matrix T 

in Eq. (3.6) represents the coordinate change given by 

r "z" 

r= *n-m 

. C21 

0 

I. 
(3.8) 

and transforms Eq. (3.7) into the system described by 

z = Fnz + F\2y + Gqw 

ey = eHxz + (C2BQ + eH2)y + eG2w 

where 

(3.9) 
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^11 = 4l-42^22 C21 

F12 = ^12C22 
Hl = (C21^11 + ^22^21)^22^21 + H2 

H2 = (C2\Al2 + C22^22)C22 

G2 = C2\T\ + ^22^2 

This transformation (Eq. (3.8)) separates the slow (z) and fast (y) states, however, they still 

remain coupled. To eliminate the slow state from the y equation, the following transformation 

7] = y +eLz (3-10) 

from Pan and Basar [4] and Kokotovic and Haddad [5] is applied to Eq. (3.9) to obtain 

z = (Fn - eFu{Lo + eEE))z + FnV + G\™ 

eil = (c2Bo + eH2 + e2(LQ + eEe)Fn)n + (eG2 + S2
{LQ + eE£)Gi)w 

where 

L = {C2B0 + eH2)~1H1 

= LQ + eE£ (3-12) 

E£=(C2B0)-
2H1FU+O(e) 

The slow and fast eigenvalues of the system in Eq. (3.11) are given by 

(3.11) 

XSj = Xj(Fn) + 0(e) j = \,-,n-m 

l{ =e-1(Xi(C2B0) + O(e)) i = l,--,m 
(3.13) 

By choosing e sufficiently small, (with the assumptions in Eqs. (3.3) and (3.4) satisfied), the fast 

subsystem is asymptotically stable. 

Equation (3.13) clarifies the two time scale property of the high gain system (3.2). The fast 
dynamics decay exponentially on the time scale j^, while the slow dynamics evolve on the time 

scale t. 
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Asymptotic stability of the fast dynamics is guaranteed by Eq. (3.4). Asymptotic stability of 
the slow dynamics (assuming that the disturbance is independent of the state) requires that the 
eigenvalues of Fu reside in the open left half of the complex plane. 

With the disturbance w given by Eq. (3.1), Eq. (3.9) becomes 

i = Fiiz + Fi2y 
, . , (3-14) 

£y = eHlz + [C2Bo + eH2)y 

where 

^n = Fn + GI(QI - C\2C22C2\) 

^12 = ^12 + ^1^12^22 

Hl = Hl + G2\Cn - C12C22C21) 

#2 = #2 + G2C12C22 

By applying the transformation in Eq. (3.10), the equivalent expression for Eq. (3.11) is 

i = (Fn-£F12(4 + £E£)W12T7 
v v " (3.15) 

e?7 = {c2B0 + eH2 + £2(4 + e^e))7? 

where 

L = [c2B0 + eH2y
lHl 

E£={C2B0y
2HlFn+O(e) 

The eigenvalues of Eq. (3.15) are given by 

tf=Xj(Fn) + 0(e) i = l,-,n-m 
J      n     ' (3.16) 

X{ =e-l(^(C2B0) + O(e)) i = \,-,m 

which shows that the disturbance does not affect the fast subsystem eigenvalues, however, the 
stability of the slow subsystem is dependent upon the disturbance feedback gains. 
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It has been shown that the eigenvalues of the high gain system (with w = 0) are the 
transmission zeros of the open loop system with output y = C2x0. Therefore, the eigenvalues of 

Fn are the transmission zeros. This result is used in [2] to develop a process to calculate 

transmission zeros. In the case where w = CxxQ, (Eq. (3.1)), the eigenvalues of Fn are the open 

loop transmission zeros of with the output y = C2XQ. 

The results of [2] show that T decomposes the system in Eq. (3.1) (with w = 0) into the null 
space of C2 and the range space of B0. Our results, with w = Cix0, show that the system 

k = Tx0 (3-17) 

is given by Eq. (3.15). Partitioning the transformation matrices as 

M = 
Mx 

M2 

M-l=[SlS2] (3-18) 

where Mx, sf are (n - m) x n, and M2, S2 are m x n matrices, the vector x0 can be written as 

XQ = fa - S2C22
lC2l)z + B0{C22B0y

ly 0-19) 

where 0 = C2[Si - S2C22C2X). 

Let 

A^Si-S^Czi (3,20) 

then C2N = 0, y = C2x0, and z = Mxx0, where MXBQ = 0. 

3.2 Linear Quadratic High Gain Feedback Control 

Consider the system and performance index described by 

*0 = A)*0 + B0U 

00 

3 = 21(^0 00^0 + e2uTRii)dT 
0 

(3.21) 

It is well known that high-gain feedback control can result from the linear quadratic (LQ) 
performance index having a small penalty, e>0, on u. This so-called "cheap control" 

optimization problem lightly penalizes the control, resulting in rapid regulation of the states 
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weighted by the penalty matrix QQ. O'Malley and Jameson [1] (among others) have studied the 

"cheap control" problem and have produced detailed results for the case when BQ QQBQ > 0. As 

noted in [2], this assumption implies the condition in Eq. (3.3), and therefore the optimal "cheap 

control" state regulator possesses the two time scale property demonstrated in the previous section. 
Moreover, a near optimum high-gain state regulator can be designed (independent of e) using the 

method of [3]. Instead of solving the full order LQ optimization, the following two reduced order 

regulator problems are solved. 

The Slow Regulator Problem: 

Consider the slow system dynamics given by 

xs = AUxs + A\2us <3-22) 

with performance index 

oo 

/ = i l(xjQnxs +2xjQl2us + ujQ22us)dr (3.23) 
0 

The Fast Regulator Problem: 

Consider the fast system dynamics given by 

xf = B2Uf (3.24) 

with performance index 

oo 

J = iJ(*/&2*/ +"/*"/)** (3.25) 
0 

where An, A12) B^, are obtaned using the transformation M as in Eq. (3.7), with the slow state 
vector xs an   (n-m) vector, xt, ut   uSt are  m vectors, and ß//are the submatrices of 

Q = (M_1
) QQM'

1
 where M is as in Eqs. (3.6) and (3.7). 

Lemma 3.1: 

If the pair (AQ,BQ) (Eq. ((3.21)) is stabilizable, then the pair (An, Ai2) is stabilizable 

Proof: (see [2]) 
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Lemma 3.2: 

If the pair (AQ,B0) is stabilizable, the pair (Anj) is detectable, where 

Frr = ßll-ßl2Ö22ar2 (326) 

and BQQQBQ > 0, Then, there exists a unique stabilizing solution Ps of the Algebraic Riccati 

Equation (ARE) 

Ps{An ~ hlQMl) + (All - AnQvQflf Ps + YTY - PsAl2QilAj2Ps = 0 (3.27) 

and the optimal control for the slow subsystem is given by 

us = -Ö22 (öl2 + A\2ps)xs (3.28) 

= -Ksxs 

Proof: (see [2]) 

The optimal feedback control for the fast subsystem is given by 

uf=-R-1B2Pfxf (329) 

= -KfXf 

where Pf is positive definite and given by 

Pf=W-\WQ12W)ll2W-1 (3-30) 

with W = (B2R~lB2
r)    . 

The composite control (combining slow and fast controls) is given by 

^=-^^^+^2) (3-31) 

Theorem 3.1: 

Under the conditions of Lemma 3.2, the composite control uc is near optimal in the sense that the 

performance / of the system described by Eq. (3.7) using (3.31) is o(e2) close to its optimal 

performance. 
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Proof: (see [2]). 

Notice that the stabilizability and detectability conditions required for the solution of the 

standard LQR problem are replaced by the conditions of Lemma 3.2. Moreover, the stabilizability 

and detectability conditions are equivalent to the existence of an unique positive semidefinite 
solution Ps to Eq. (3.27) that renders An - Ai2Ks Hurwitz. To regulate the output y = C2x0 , Q 

is chosen as C2C2. If rank(C2) = m, then the near optimal control calculated by letting 

ys = c21xs, y/ = c22xf in Eqs- (3-22) through (3.25), respectively, is o(e2) close to the 

optimal control. The detectability condition of Lemma 3.2 is replaced by the stabilizability of 

(An, Aft) which implies that ReiMAn - Ai2C22C2ij\ < 0. 

As noted in [2], the solution to (3.27) is Ps = 0. Therefore, 

", = -Ö22Öir2^ (3-32) 

Therefore, the transmission zeros of the system in Eq. (3.7) with output y = C2XQ must be in the 

open left half plane. 

3.3 High Gain H«, Optimal Control 

In this section the results of Pan and Basar [4] are used to show that high-gain feedback control 

can result from the optimization of the system in Eq. (3.1) with respect to a quadratic cost function 
having a small penalty eonu, and disturbance bound 7 » e. Consider the performance index 

00 

Jy = \ J.(JCO ob*0 + e2uTRu - r2wTw)dt (3.33) 
0 

For e > 0 and small, 7 » e, and BQQQBQ > 0, the system is high gain and possesses the two 

time scale property previously discussed. As a result, a near optimum regulator can be designed as 
the composition of the slow subsystem Hx state regulator, and the fast subsystem LQ regulator 

(since no disturbance term appears in the fast dynamics). 

Let 7 (e) denote the smallest value of 7 > 0 under which the differential game (Eq. (3.1) and 

Eq. (3.33)) has a bounded upper value when the control u is a closed loop state feedback control 

policy. Then, for e > 0 and 7 > y*(e), it is known [4] that this differential game has a saddle 

point solution given by 
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u=-£~2B$R lZxQ 

w* = y-2D$Zx0 

(3.34) 

where Zis the solution to the ARE described by 

Äfiz + ZAo- Z(£-
2
BQR-

1
BI - y-2D0Dl )z+Qo = 0 (3.35) 

Assume that the system (Eq. (3.1) has been transformed into the form given in Eq. (3.7). Using 

this same partition, define A, Q, B, and D as 

A = 
All hi 
A2\ ^22 

Q = 
On On 
Oll Ö22 

B = 
0 

B2. 
D = 

0 
(3.36) 

then Eq. (3.35) becomes 

ATZ + ZA- z[e~2BR7lBT - y-2DDT)z + Q = 0 

Let Z be partitioned as 

(3.37) 

Z = 
Zn    eZn 

&\2    ^22. 
(3.38) 

By substituting this into Eq. (3.37) and letting e -> 0, the following algebraic equations are 

obtained: 

.-2 -lDT7T 
MiZn + ZnAu + r  Z\\D\D\ Zn+Qn = z^tf  #2Zfe 
Zl 1-^12 + Ql2 = Zi2^2^   #2 ^22 

Ö22 = Z22B2R~ ^2 Z22 

Solving for Z22 and Zyi results in 

Z22 = W-\WQ22W)l/2W-1 

(3.39) 

Zl2 = {ZnAl2 + Q12)Z22
lW-2 

■I try 

where W = fo/T1^)    . Substituting these expressions into the Zn expression results 

(3.40) 

in 
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(An-A2Q22Q12) Zn+Zn(An-Al2Q22^2)- 

Zll(42Ö22Air2 " r~2DlDl)Zll +Ö11- Q12Q22Q12 = 0 

Now, define the set 

r = {y > 0: Vy >y Eq. (3.41) has a bounded solution Zj 1 > 0, and 

S = An- A12Ö22Öir2-(Ai2Ö224r2 " /"^^ll is stable } (3.42) 

Let y =inf(yer), then a solution to Eq. (3.41) exists for all y>y . Notice that T is 

nonempty since y can be chosen sufficiently large. That is, in the limit as y -> °°, Eq. (3.41) -> 

Eq. (3.27). Therefore, given that Lemma 3.2 holds for all y > y , a near optimum high gain state 

feedback regulator can be designed by solving the following two reduced order regulator (one H^, 

one LQ) problems. 

The Slow Hx State Feedback Problem: 

Using Eq. (3.7), with u defined in Eq. (3.1), and e = 0, we obtain the slow system dynamics 

JL = A\ix* +Ai«c +D]WV 
_J s (3.43) 

us = ~C22C2lxs 

where 

xs~x\ 

x2=x2(e = 0) 
us=*2 

The slow cost function is 

J7s = 1 ftxJ&iXs + xlQi2Us + "Jöir2*5 + uj Qnus - y-2wjws)dt (3.44) 
0 

Notice that us depends only on the slow state. Therefore, in contrast to [4], there is only one slow 

game to be considered. To convert Eq. (3.44) to the standard form with no crossterms, define 

üs=us+Q22lQ\2xs (3-45) 

Substituting Eq. (3.45) into Eqs. (3.43) and (3.44), yields 
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*s = (An- hiQilok )xs + Ai2^s + A^ 
(3.46) 

0 

Solution of this standard LQ differential game depends on the solution of the following ARE 

(An-AnQiMifzs + ZS(AU-AnQMi)-z^uGzMi-rJ2AAr)z, + On = 0 (3.47) 

Define 

rs = {y'> 0:Vy >y' Eq. (3.47) has a bounded solution Zs > 0, and 

Re[x[Au - AnQ2JQ[2 ~ [hiQii^l - 7~2^)zs^ < o} (3.48) 

Let 

Ys=inf(yers) (3-49) 

Then, the transformed game has a bounded upper value if y > ys, and only if y>ys [6]. For 

y>ys, let Zs be the unique nonnegative definite solution of Eq. (3.47). Then, there exist 

feedback saddle-point policies for the transformed game, given by 

— —1   T 
USy =-Ql2A12Zsxs 

% = Y~2I>[zsxs 

(3.50) 

Transforming Eq. (3.50) back into the original coordinates yields 

%=-Q22[Ql2 + A12Zs)xs 

= -Klsxs (3.5D 

wsy = ~K2sxs 

The Fast Hx State Feedback Problem 

Define the fast state, Xf, the fast control, Uf, and the fast disturbance, Wf, as 
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(3.52) 

xf = *2- "*2 

uf = £U 

Wf = 0 

Then the fast subsystem dynamics and the associated cost function are given by 

if = B2uf 
oo 

J7f = 2 j(xfQ22*f + UT
fRUf)dT: 

(3.53) 

Solution of this fast LQ problem defined by Eq. (3.53) depends of the solution of 

Q12 = Zf&2.R~lB%Zf (3.54) 

which is given by 

Zf = W-l{WQ22W)y2 W~l (3.55) 

where W = (ß^T1/?! j . The corresponding feedback controller for the fast subsystem is given 

by 

uf=-B^R-lZfXf (356) 

= -Klfxf 

Let 7 > 7j> the high gain composite controller is obtained by substituting Xf from Eq. (3.52) and 

x~2 from Eqs. (3.43) and (3.45), which results in 

u = -e-l(KlfKlsXl+Klfx2) (357) 

= -{C2lXl + C22X2) 

Moreover, the composite control is near optimal in the sense that for all y > ys, there exists an 
ey > 0 such that for all e > ey, the disturbance attenuation is attained for the full order system. 

This is proven, as in [4], (using the Implicit Function Theorem), by showing that the elements of 

the solution to Eq. (3.37), Zn, Z12, and Z22, each have an asymptotic expansion in e. Using 
this result, and applying the composite control to the system in Eq. (3.7), it is shown that Jy has a 

finite cost for y> ys. 
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3.4 High Gain Autopilot Design and Simulation Results 

In this section linear and nonlinear simulation results are presented which represent the 

application of near optimal high gain Hx theory to missile autopilot design. The resulting HM 

angle of attack (AOA) command autopilot is also compared to the high gain LQ design. 

The missile configuration chosen for this initial study uses reaction jet thrusters (RCVs) for 

control. The pitch plane autopilot design model (using Eq. (3.1)) is given by 

*0=[J*a    «   <7   TRCs] (3.58) 

A) = 

1 0 0 0 
0 za z« 

ZRCS 
0 Ma Mq MRCS 
0 0 0 

7*RCS 

Bn = 

X 

0 
0 
0 

IRCS. 

Dn = 

0 
J\v 

0 
w 

da/ 
TRIM 

where the Zt represent the partial derivatives °y^x. 

condition, and the M,- represent the partial derivatives of °V^X. 

law is given by 

TRCSC =—^ic2x0 

The autopilot was designed at the following flight conditions: 

evaluated at the trimmed flight 

. The state feedback control 
TRIM 

(3.59) 

a = [0   10   •••   90]     {deg) 

V = [500   1000]     {ft Is) 

/i = [10   30]     {Kft) 

The performance weighting matrices were chosen so that the linear AOA step response had a 

rise time less than 400 milliseconds. The linear system AOA step response for the flight condition 

a = 40°, V = 1000 ft/s, with h = 10 Kft is shown in Figure 3.1. 

The gain scheduled control law (gains in Eq. (3.59)) was simulated for a 180° turn to the rear 

hemisphere maneuver, assuming that the missile (main engine) was boosting at 5000 lbs, and that 

the disturbance w is a white noise process representing vertical wind gusts. The nonlinear planar 

simulation vertical velocity (w in body coordinates) responses for both the LQ and the H^ 

autopilots are shown in Figure 3.2, with and without wind effects. For illustrative purposes, the 
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wind gust magnitude was chosen to be larger than what is typically encountered in order to test the 

disturbance rejection capabilities of the autopilots. 

Figure 3.3 shows the nonlinear AOA responses for both autopilots tracking the AOA 

command. Note that the //«, autopilot exhibits better command following in the absence of the 

disturbance. The command following of both autopilots is degraded as a result of the wind 

disturbance. However, the Hx autopilot does a better job at rejecting the wind disturbance. 

The RCV control activity for this maneuver is shown in Figure 3.4. Notice that //«, autopilot 

exhibits more control activity than the LQ autopilot. The large spike in the //«, simulation RCV 

thrust response is the result of a significant increase in the magnitude of the disturbance input 

matrix Di between flight conditions, resulting in a large change in the controller gains (due to the 

gain scheduling). This problem could be addressed through a redesign of the Hx controller at the 

higher AOA flight condition with modified design requirements (same design requirements were 

used at low and high AOA in this study). 

Figure 3.5 shows the downrange versus crossrange trajectories for both autopilots flying 
through the turbulence. The turn performance of the //«, autopilot is slightly better than the LQ 

autopilot. 
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Figure 3.1 Linear angle of attack step responses. 

-60- 

McDonnell Douglas Corporation 



Report MDC95P0058 Nonlinear Control of Missiles 

MO 

■ 

""■"—«^_^ A    | 

; 
 _...J  

7n ; \ _L 
'-_  

w(with wind    gust) 
>   m 

// 

■ II 
'■ 11 

i i 2 1                j»               J               . 

Time (sec) 
• 7 •              J 

a) High Gain LQ Autopilot 

Q. 

Time (sec) 

b) High Gain //„, Autopilot 

Figure 3.2 Nonlinear planar simulation vertical velocity responses. 
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Figure 3.3 Nonlinear planar simulation angle of attack time histories. 
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Figure 3.4 Nonlinear planar simulation reaction jet thrust responses. 
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Figure 3.5 Nonlinear planar simulation downrange versus crossrange results. 
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3.5 Conclusion and Future Research 

It has been shown that linear time invariant high gain feedback systems with additive 

disturbance can be represented as singularly perturbed systems, and therefore can be decomposed 

into slow and fast subsystems for control law design. Assuming that the disturbance is a linear 

function of the slow state, it was shown that the fast subsystem dynamics are unaffected by the 

disturbance. However, the stability of the slow subsystem is dependent upon the disturbance 
feedback gain. The solution to the near optimal high gain H^ state feedback problem was then 

shown to be equivalent to the solution of a slow Hx state feedback problem and a fast LQ state 

feedback problem. For sufficiently large y, the conditions for the existence of solutions are 

shown to be equivalent to the existence conditions for the high gain LQ problem. Moreover, the 

optimality of H^ composite control system with respect to the Hx performance measure is 

equivalent to the optimality of the LQ composite control with respect to the LQ performance 

measure, for e sufficiently small. Finally, nonlinear simulation results showed that command 
tracking performance of the high gain //M autopilot was comparable to the high gain LQ autopilot. 

However, for the 180° maneuver in the presence of turbulence, the H^ autopilot exhibits slightly 

better disturbance rejection properties. 

Future research needs to be directed at the main issues in applying VSC sliding mode control 

law design and analysis to missile autopilot problems, that is sliding mode existence, asymptotic 

stability of the sliding mode, and reachability to the sliding mode. Conditions for evaluating these 

features are well known for linear time invariant (LTI) systems [4], and readily support control law 

design using LTI system models with gain scheduling. 

Modeling a missile's dynamics using LTI system models naturally leads to a gain scheduled 

control law. This is typical of how industry designs missile control laws. Applying VSC to these 

LTI models, as demonstrated in the work performed here, leads to a gain scheduled sliding 

surface, with the gains interpolated between design points. Verification of the design relies on 

proof by nonlinear simulation. 

Another approach to the VSC missile autopilot design problem is to design a nonlinear control 
law. This requires designing a nonlinear sliding surface, s(x), for the nonlinear system 

x = fix) + g(x)u J        ' (3.60) 
" = umaxs8n{s(xJ) 
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Asymptotic stability of the above system is based upon the following fact: If the sliding mode is 
asymptotically stable, then the closed loop system is asymptotically stable if and only if the sliding 
mode is reachable. The goal is then to determine s(x) to insure both asymptotic stability of the 

sliding mode and reachability to the sliding mode. An approach to address nonlinear sliding mode 

stability is outlined below. Methods to evaluate reachability represent new research. 

The condition for sliding mode stability is based upon passivity and detectability of the system 
as follows. If the system is passive with a positive definite C1 storage function V(x), then the 

sliding mode is asymptotically stable provided that it is detectable. By definition, the system given 

by 

x = f(x) + g(x)u 
y = s(x) (3-61) 

u = -<t>(s(x)) 

is passive 

that 

if there exists a function V:Rn ->/?, with V(x)>0, VfO) = 0, and V(x)eCl, such 

V (x(t)) - V(x(t0)) < J / (s)u(s)ds (3 • 60) 

A condition for determining passivity of a given system is the Kaiman-Yakubovitch-Popov 

(KYP) Lemma which. Let s(x) = (Lgvf where V(x)>0, V(0) = 0, and V(x)ed. Then, if 

LfV < 0, then the system described by Eq. (3.59) is passive. 

Some of the issues involved with using this approach are verifying the existence of V(x), 
determining V(x), and determining u as a function of s(x). Nonlinear optimal control theory 

could potentially be used to address be these issues. 

Detectability of the system in Eq. (3.59) is evaluated by examining the set 

M,;i7zMMA«]]vW-0} 
where m is the rank of LgV. If S = {0}, then the system in Eq. (3.61) is detectable. 

One of the major problems in performing nonlinear control law design is developing a 
representative design model. The aerodynamic coefficients are typically given in a table lookup 

form as a function of Mach, control effector position, body rates, and wind angles. Fitting a 
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model to this data can require an extensive amount of work. In addition, there are significant 
uncertainties in the wind tunnel data due the measurement instrumentation. These uncertainties and 
high alpha phenomena such as asymmetric vortex shedding can further complicate the modeling 
process. In addition, nonlinear control law design techniques are more complicated and the 
performance payoff (over gain scheduled designs based upon LTI models) is not clear. On the 
other hand, nonlinear analysis techniques are always required and may help quantify the 
performance advantages when using nonlinear control techniques. To compare the VSC gain 
scheduled control law to a VSC nonlinear control law, further research is needed to develop 
reaching conditions for the nonlinear system, and in combining these conditions with the sliding 
mode asymptotic stability conditions obtained via the KYP Lemma (assuming detectability). 
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4 Nonconservative Robustness Tests For Mixed Uncertainties 

Robustness analysis is important because of the uncertainty present in engineering design 

models of physical systems. This uncertainty comes from many sources such as parameter value 

uncertainties, neglected and/or mismodeled dynamics, time delays, and neglected nonlinearities. 

These modeling errors fall into two broad categories: parametric (real) and dynamic (complex) 

uncertainty. A more realistic description of these errors is one that includes both categories, which 

is referred to as mixed modeling uncertainty. Feedback control is used to achieve performance in 

the presence of such uncertainties. 

Contrary to the 1970's where control research dealt with systems with known mathematical 

models, control engineers today must design for performance and understand the impact of 

uncertainty. The pioneering work of Zames, Doyle, Stein, and Safonov has led to a framework in 

which robustness analysis and synthesis, for restricted types of uncertainties, is now possible. 

There are many techniques available for robustness analysis. These stability tests focus on 

either parametric or dynamic uncertainty, and can be categorized as polynomial tests, Lyapunov 

tests, zero exclusion tests, and singular value based tests. When analyzing a missile flight control 

system, robustness to both parametric and dynamic uncertainty is of critical importance. 

The research presented here in robustness analysis is motivated by a general industry need to 

guarantee stability and performance robustness for control systems with mixed uncertainty, and 

secondly, by a need to reduce the costs associated with designing these control systems. Missile 

flight control systems use gain schedules designed from linearized models to compensate for 

highly nonlinear aerodynamic characteristics, undesirable gyroscopic coupling, and the large range 

of flight conditions encountered over the flight envelope. Automation of this task using robustness 

theory is shown in Figure 4.1. 

Using the approach illustrated in Figure 4.1, feedback gains are calculated at each design point 

using controller synthesis software. Robustness analysis software is used to determine the next 

design point in the flight envelope, guaranteeing uniform stability margins as well as performance 

between design points. This loop is repeated until the flight envelope is covered by the gain 

schedule. Nonconservative evaluation of the flight control system robustness to mixed uncertainty 

is required in order to automate the process. 
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Figure 4.1 MDC automated flight control system design. 

Results using this process have been published in Wise [1] using the structured singular value 

\i (using complex p for mixed uncertainty) robustness analysis, and are shown in Figure 4.2.. 

This approach led to large gain tables in which the numerical values of the gains changed very little 
between design points (due to the conservatism of complex p). The missile's aerodynamics 

become unstable at 13° AOA. As shown in the figure, the gain tables became very dense in this 

region with very little change in magnitude. 

Stability robustness to real parameter uncertainties have been analyzed using the deGaston- 

Safonov real multiloop stability margin [2], with significant improvements in the algorithm made 

by Sideris [3] in removing the frequency search. For dynamic uncertainties the most popular 

method of analysis is Doyle's structured singular value [4-6]. This pioneering work has been 

extended to address mixed (real and complex) uncertainty analysis problems in Young [7]. 

The uncertainties in a typical feedback control system may arise from real parameter variations, 

neglected/mismodeled dynamics, or combinations of both (mixed uncertainty). The stability 

analysis model is shown in Figure 4.3. The uncertainties in the system are isolated and placed into 

a diagonal matrix A. The transfer matrix M describes nominal system characteristics which have 

been stabilized by a compensator. Thus, for A = 0, the system is stable. Let 
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Figure 4.2 Pitch autopilot feedback gains. 
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Figure 4.3 AM uncertainty analysis model. 

(4.1) 
A=diag[b\   -   Sn] 

M(jco)eCnXn 

Stability of the system described by Figure 4.3 is implied by the det[I - AM] * 0. 

The algorithm presented here offers the analyst an alternative approach (other than //) f°r 

analyzing stability robustness to mixed uncertainties. The idea is to determine the smallest set of 

uncertainties that makes the return difference matrix singular, with the search performed over the 

parameter space that models the uncertainties. Although the algorithms require 2" operations at 

least once (n = number of uncertainties), the approach is still reasonable (for small to medium sized 

problems) for many engineering problems of interest to the aerospace industry. 

The stability robustness analysis problem is solved by first forming an analysis model (AM) in 
which the uncertainties are isolated into the A matrix. Next, a variation polynomial a(S) i s 

formed by expanding the determinant of the return difference matrix for this analysis model 
(det[I-AM] = a(ö)). The robustness test determines what uncertainties A make the return 

difference matrix singular (i.e. det[I-AM] = 0) by computing the zeros of the variation 

polynomial a(S). The zeros of a(8) are found by using a conjugate gradient algorithm 

minimizing the magnitude squared of the polynomial a(5), combined with a simulated annealing 

algorithm for starting the conjugate gradient optimization. 
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4.1 The Variation Polynomial 

The variation polynomial a(S) is formed by the determinant expansion of det[I - AM], where 

the diagonal matrix A models mixed uncertainties and the nominal matrix M is stable. The zeros 
of the variation polynomial a(8) determine when the mixed uncertainties destabilize the system. 

Our objective is to form the polynomial a(8) at each frequency and solve, by optimization, for the 

destabilizing uncertainties. 

The following three steps are used to form the AM analysis model from which we compute the 
variation polynomial a(d): 

i) build a signal flow graph (or block diagram) model with scalar uncertainties. 

ii) form the AM analysis model using appropriate software isolating the uncertainties into a 

diagonal matrix A (this step can be accomplished using MATRIXx, CTRL-C, Matlab). 

iii) compute the variation polynomial a(ö) coefficients from a(S) = det[I-AM]. 

Step i) 

The AM robustness analysis model is formed by introducing scalar uncertainty models into a 

signal flow graph model of the control system, and manipulating the signal flow graph. All 

parametric (real) and dynamic (complex) uncertainties are modeled using scalars, and the resulting 

analysis model always has a diagonal matrix A. 

Figure 4.4 illustrates this point by showing two signal flows graph models of the longitudinal 

flight control system of a bank-to-turn missile. Figure 4.4a was created from transfer functions 

whereas Figure 4.4b was created from the state equations. 

Parametric uncertainties in real parameters pj can be modeled using a multiplicative uncertainty 

model pj =pj(l + Spj). Dynamic (complex) uncertainties can be modeled using complex scalars 

Cj- and also can use a multiplicative uncertainty model c,- = cj(l + <5cj). (Additive uncertainties are 

also modeled in this framework.) These parametric and dynamic uncertainties are modeled using 

signal flow graph branches and are inserted into the system signal flow graph, as shown below. 

Spy % 5c,- 8c,- 
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a) Signal flow graph from transfer functions. 

b) Signal flow graph from state equations. 

Figure 4.4 Signal flow graph models for a pitch plane dynamics and autopilot. 

Step ii) 

The matrix M is computed by breaking the signal flow branches at each variation and forming 
input/output nodes as shown above. The elements of M are the transfer functions between the 
input and output nodes of the signal flow graph. The motivation for using signal flow graph 
branch models is that multi-parameter coefficients can be expanded using branch gain models, and 
variations can be introduced into the individual parameters. For example, the missile stability 
derivative Za (body lift due to angle-of-attack a) can be expanded as 
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mV 

which allows for simultaneous variations in the nondimensional stability derivative Cza, dynamic 

pressure Q, mass m, and velocity V (in a real parameter uncertainty analysis problem). This 

signal flow graph modeling technique removes any restrictions on how the variations can enter into 

the model. A FORTRAN implementation of our signal flow graph model decomposition uses 
Gamer's rule (Klein [8], Wise [9,10]) to form the transfer function matrix M(jco). We have also 

implemented this approach in Matlab, CTRL-C, and Matrix-X. 

The AM analysis model that results from our signal flow graph decomposition is highly 

structured, and can be used in analyzing specific uncertainty models, when norm bounded 

uncertainty representations are available, or to guarantee uniform stability margins over a range of 
real parameter variations. The mixed uncertainties 8pt  and 8q model parameter variations that 

appear linearly-fractionally in the system model. Our research also applies to systems whose 
parameters do not appear linearly-fractionally in the plant model, such as the parameters 0,- in 

complex exponentials e~}^'1 (time delays added at the plant inputs and outputs). 

Step iii) 

The expansion of the det[I - AM] forms an affine polynomial in the parameter variations Spi and 

6cj. Consider, for example, Sj = 2 real parameter variations and S2 = 1 complex variations, with 

n = Si + Sj = 3 the dimension of A. The variation polynomial has 2n coefficients a^eC and is 

formed as follows for this example: 

A = diag[5pi 8p2 Sei] (4.2) 

a{5) = det[I-AM] 

= % + aiöpi + aqSpi + a-ifici + a^8pi8p2 + a^Spidci + a^dpiScn + a-]öpi8p2Öci 

This can be written as the inner product of two vectors by factoring out the coefficients a^ into the 

vector a and placing the parameter uncertainties into the vector 8 as follows: 

-75- 

McDonnell Douglas Corporation 



Report MDC 95P0058 Nonlinear Control of Missiles 

rp 

det[I-AM] = [a0   •••   a7][l   8px   8p2   8cx   •••   8pi8p28ci] 

= aT8 <4-3) 

= a(8) 

The 2" x 1 vector a is computed at each frequency by mapping the vertices of a particular 
parameter space hypercube into the complex plane using the det[I - AM].   By stacking each 

mapped vertex into a vector v, veC2 , we can relate v to the coefficient vector using 

v = Pa (4-4) 

where each row of the matrix P is 8 evaluated at a vertex of the hypercube. By a special choice 

of the parameter space hypercube we can design the matrix P to be orthogonal (this applies to both 

real and complex uncertainties). This lets us invert the 2n x 2" matrix by taking its transpose, 

allowing us to easily solve for the coefficient vector am Eq. (4.4). 

a = PTv <4-5> 

For real parameter variation problems, we have used Eq (4.4) in computing the deGaston- 

Safonov real multivariable stability margin. Some very interesting observations resulted, and are 

presented in the following numerical results subsection on parametric uncertainty. Faced with an 

analysis problem in which the uncertainties did not appear linearly-fractionally in the model (time 

delays), we extended this robustness analysis method to include complex parameter variations. 

These results follow in the numerical results subsection on dynamic uncertainty. 

4.2 Computing the Zeros of the Variation Polynomial 

In the general case of n parameter variations (complex parameter variations or mixed real and 

complex parameter variations) optimization techniques are employed to compute the zeros of the 
variation polynomial a(8). The objective function used is the magnitude squared of the variation 

polynomial. The zeros of a(8) are found by using a conjugate gradient algorithm minimizing the 

magnitude squared of the polynomial a(8), combined with a simulated annealing algorithm for 

starting the conjugate gradient optimization. The analysis goal is to find the smallest set of 

parameter uncertainties that make a(8) = 0. 

There are many techniques available to find the minimum value of an objective function. Of all 

these methods the conjugate gradient method [11-14] is the simplest. 
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The problem of minimization can be visualized as a problem in hill climbing [11]. The bottom 

of the valley can be found by starting at some initial point and climbing in the downward direction 

until a minimum point is reached. The climbing procedure is efficient if the direction of climbing is 

the direction of steepest descent. A detailed algorithm for the steepest descent method is given in 

[11]. The steepest descent method can be modified to take the advantage of mutually conjugate 

directions of descent [12]. This reduces the convergence difficulties of the steepest descent 

method presented in [11]. Most of the conjugate gradient algorithms presented in [11-13] deal 

with objective functions which are quadratic. Conjugate gradient algorithms used to optimize non- 

quadratic functions are presented in [14]. 

The zeros of a(S) can be found by using a conjugate gradient algorithm for non-quadratic 

functions as presented in [14]. Since a(S) is complex, the objective function to be minimized is 

written as follows 

F = (aTö)(aTS)* (4.6) 

Where a(5) is the complex variation polynomial and (•)   is it's complex conjugate.  When F 

becomes zero a(S) is also zero. 

The objective function F presented in Eq. (4.6) is one equation in n unknowns. Also, there is 

more than one set of parameters that make the polynomial zero. The set of the smallest 

uncertainties that make the polynomial zero is to be found. This type of combinatorial optimization 

problem can be solved using an approach called "simulated annealing". Simulated annealing is 

analogous to the physical process of annealing of solids [15]. 

Annealing is a process in which a solid is heated in a heat bath until the solid melts. Then the 

temperature of the heat bath is reduced gradually until the particles arrange themselves in the 

ground state of the solid. At each temperature value T, the solid is allowed to reach thermal 

equilibrium. This thermal equilibrium is characterized by the Boltzmann distribution which is 

stated as below: 

PT{X = i] = -^—exp 
r-E^ 

Z(T)   *[KBT 
(4.7) 

Where X denotes the current state of the solid and Z(T) denotes the partition function [15], which 

is defined as follows 
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(-Ei \ 

w-ffi* 
(4.8) 

where £,• is the energy, KB is the Boltzmann's constant, and T is the temperature of the heat bath. 

The analogy between the simulated annealing and the physical annealing process is that optimal 

solutions of a combinatorial optimization problem are analogous to the states in a physical 

annealing process. Similarly, the cost of an optimal solution is analogous to the energy of each 

state. 

Software Implementation 

The software tool developed under this research (called ROBUSTC) builds upon the 

FORTRAN program called ROBUSTR published in Wise [9, 10]. ROBUSTR was developed to 

calculate the deGaston-Safonov [2] real multiloop stability margin. It is applicable only to LTI 

control systems with real parameter variations. 

In implementing the calculation of the real multiloop stability margin the variation polynomial 
a(S) was formed [16, 17]. This polynomial is the expansion of the determinant of the return 

difference matrix I-AM for the system shown in Figure 4.3. It can be written as an inner 

product of two vectors, and can be used to replace the matrix determinant calculations required to 

map the parameter space hypercube into the Nyquist plane when computing the real margin. This 

approach led to a significant reduction in the CPU time required to compute the real margin using 

the deGaston-Safonov algorithm. 

Figure 4.5 illustrates the software development process that was used to develop ROBUSTC. 

Prior to testing ROBUSTC, the individual subroutines underwent unit testing. The conjugate 

gradient subroutine used in ROBUSTC (called FRPRMN) went through an extensive testing 

procedure comparing it with another well documented conjugate gradient subroutine called 

VMCON (used at MDC). An analytical expression for the gradient is used in ROBUSTC. The 

analytical gradient was compared with numerical approximations of the gradient, for small changes 

in the parameters, with both methods giving identical results. After these individual subroutines 

were tested, the overall program was assembled. 

Figures 4.6 through 4.8 show a flow charts for the FORTRAN program ROBUSTC. Any 

analysis model can be input to ROBUSTC by first forming a state space model that describes the 

M matrix in Figure 4.3, using either Matlab, CTRL-C, or MATRIXx. The analysis model should 

be validated prior to building the state space model for ROBUSTC. A Matlab procedure file was 
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Figure 4.5 ROBUSTC analysis software development. 

written which takes any M-matrix quadruple, (Am,Bm,Cm,Dm), and writes the FORTRAN code 

that inputs the model into ROBUSTC. This code is then compiled and linked to the ROBUSTC 

code. 

Simulated annealing finds the global minimum by jumping around in the parameter space (due 

to the high temperatures) and evaluating the cost at each jump. The smallest cost and parameters 

associated with that cost are stored for retrieval. The algorithm stops when the process has 

sufficienüy cooled, as specified by the user. 

In our application of simulated annealing, the annealing algorithm is used to start a conjugate 

gradient algorithm that minimizes the variation polynomial (F in Eq. (4.6)). The objective 

function is not a convex function, so local minima can result, depending upon where the algorithm 

is started. The annealing algorithm, by jumping all over the parameter space for the uncertainties, 

and starting the conjugate gradient algorithm at each jump, finds the smallest set of destabilizing 

parameter uncertainties. 

An algorithm to implement the simulated annealing is presented in [15]. A flowchart for the 

implementation of this algorithm for our problem is given in Figures 4.7 and 4.8, and is explained 

as follows. The function FRPRMN uses a conjugate gradient algorithm to minimize the variation 

polynomial objective function F. The input argument to this function is some starting value 

DELTA where the conjugate gradient algorithm is going to start. This function returns two 

arguments; 1) the local optimal solution of F which is denoted as DELTA*; and 2) the optimal 
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value of the function F which is denoted as FVAL*.  To find the smallest set of destabilizing 
uncertainties, the 2-norm of the optimal solution DELTA* is calculated, which is denoted as COST; 

The function logsched returns a zero or a one depending on the input arguments. This output 
of this function is used to adjust the temperature, cooling the process when the cost is reduced.. 
The flow chart for logsched is given in Figure 4.8. The function rand generates a vector of 

random numbers. 

The development and validation of the analysis models prior to using ROBUSTC is a key step 
in process. Experience has shown that it is easy to make modeling mistakes when analyzing 

complicated flight control problems containing a large number of uncertain parameters. 
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Figure 4.6 Flow chart of ROBUSTC. 
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Figure 4.7 ROBUSTC simulated annealing implementation. 
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Figure 4.8 Logsched flow chart. 
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4.3 Numerical Results 

Parametric Uncertainty (Real) 

For problems with only real parametric uncertainty the robustness analysis problem can be 

solved by the deGaston-Safonov real multivariable stability margin [2]. We have implemented Eq 
(4.3) in FORTRAN software for computing the real margin km. To start, the algorithm requires 

mapping the 2n vertices of the parameter space hypercube into the Nyquist plane at a specific 
frequency. Each vertex of the cube defines a A and is mapped by the det[I-kAM]. This 

requires evaluating the determinant of a n x n matrix 2n times. Once this is complete, Eq. (4.5) is 

used to solve for the variation polynomial coefficients. During the search for the largest k, Eq. 

(4.3) replaces the determinant calculation with a vector inner product. In every application of this 
approach, we have noticed that a majority of the coefficients ak were zero, and remain zero for all 

frequency. For the remaining frequencies (during the frequency sweep), only the nonzero 

variation polynomial coefficients are calculated. This greatly reduces the size of the variation 

polynomial that must be considered, and the size of the vectors used to compute its magnitude. 

We have incorporated the variation polynomial approach along with a polynomial-time convex 

hull algorithm into a generic real parameter variation analysis program called ROBUSTR (see 

[9,10] for details on this software). Table 4.1 lists CPU times using a Vaxstation 3200 

workstation for several missile autopilot analysis problems. In an analysis of a roll-yaw missile 

autopilot with n = 9 uncertain real parameters, only 32 of the 512 variation polynomial coefficients 

were nonzero. This reduced Eq (4.3) to an inner product of two 32 x 1 vectors, greatly reducing 

the computational burden. This important observation, an implementation, makes the real margin 

algorithm implementable for «-large problems. 

ROBUSTC has been applied to several test problems (generally low order) where analytical 

results can be computed. Figure 4.9 shows a block diagram and signal flow graph model for a real 

parameter variation analysis problem. These results can also be calculated using ROBUSTR which 

implements the deGaston-Safonov real margin algorithm. The closed loop characteristic equation 

for the system shown in Figure 4.9 is given by 

s3 + 10s2 +150(1 + Ski)s + 960(1 + 5*i) = 0 (4-9) 

Substituting s = jco with co = 1 rad/s results in 

950 + 960% + ;(149 +1505%) = 0 (4-10) 
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ROBUSTR CPU USAGE 
UNCERTAIN MODEL NODE CPU TIME TO ANALYSIS 

AUTOPILOT PARAMETERS INPUTS EQUATIONS FORM MODEL CPU TIME New 
(n) ("p> (na) (SEC) (SEC) Algorithm 

PITCH 
PITCH-RATE 4 4 13 0.6 43 
COMAND 4 7 23 2.9 161 

PITCH 4 4 18 1.6 44 11 
ACCELERATION 4 6 21 4.3 110 
COMMAND 4 8 28 10.5 229 

ROLL-YAW 4 4 40 57.5 38 7 
ROLL-RATE 5 5 40 78.0 164     (0.04 HRS) 22 
COMMAND 6 6 40 96.5 289     (0.08 HRS) 33 

7 7 40 117.5 1033   (0.28 HRS) 157 (0.04 HRS) 
8 8 40 136.2 3093   (0.86 HRS) 458 (0.13 HRS) 
9 9 40 156.4 13683 (3.80 HRS) 2039 (0.57 HRS) 

VAX STATION 3200 

Table 4.1 ROBUSTR CPU usage. 
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Real Parameters-Only Example 
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Figure 4.9 Real uncertainty 2-parameter test problem. 

The parameters 8k\ and 8k2 that make the real and imaginary terms zero are: 

&! =-0.993333 (411) 

8k2 = -0.989583 

These same results are computed by ROBUSTC. 

Dynamic Uncertainty (Complex) 

We have also used our signal flow graph modeling technique to develop analysis models for 

parameter variations that do not appear linearly-fractionally in the model, such as parameters 

<pi e [-jc, %\ that appear in e~®1. For a time delay uncertainty, the multiplicative uncertainty 

model is e~j<t>i =1 + 5/. Solving for the uncertainty 8t yields Si=l-e~^i. The SSV p 

produces conservative results when applied to this problem. The multiplicative uncertainty 

e-J<t>i _ i (disk of radius one centered at -1) is conservatively covered by a disk (disk of radius 2), 

as shown below. 
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The analysis problem that motivated this applied research was an automatic landing control 

system for an Unmanned Air Vehicle (UAV). The current production UAV is landed by an 

operator using a double-joystick (throttle plus control surfaces), which requires extensive training. 

In addition, some mission scenarios include multiple UAV's which increases the operator work 

load. An AUTOLAND system would reduce training costs, improve the landing success rate, and 

reduce operator work load. In the AUTOLAND control system, telemetry data from the vehicle 

along with ground radar data is processed in a ground control station and the flight control signals 

are sent back to the UAV. The analysis question was to determine if the transportation delays 

destabilize the UAV, and how large could they be? 

In addition to this motivation, plant-input and output stability margins can be computed using 

the gain and phase variation model Jfc,-e~;^' inserted in each input and output channel. Gain 

margins would be evaluated with ihzfa set equal to zero, and phase margins would be evaluated 

with the gain variations kt set to unity. However, the fa do not appear linearly-fractionally in the 

model. 

Following these motivations, consider the missile pitch autopilot phase variation analysis 

problem shown in Figure 4.10. Using a multiplicative uncertainty model for each e J<p', as 

shown in Figure 4.10, our approach yields the following variation polynomial: 

a{8) = 00 + (He-fa***) + a5e-j^+<h"> (4.12) 

where the five coefficients in this variation polynomial that are not listed were identically zero for 
all frequency. The zeros of a(8) occur at the fa's that destabilize the system. Figure 4.11 shows 

the frequency response of the coefficients ak. 

For <% =e~^<', the sum of the coefficients ak in Eq. (4.12) always equal unity. At high 

frequencies, the variation polynomial cannot be made equal to zero by adjusting the parameters fa, 

02, or 03- This is evident from Figure 4.11 as the magnitude of 04 and 05 go to zero. 
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MISSILE DYNAMICS 
AUTOPILOT 

Figure 4.10 Pitch autopilot phase variation analysis model. 

10 10° 101 102 

FREQUENCY 

Figure 4.11 Pitch autopilot variation polynomial coefficients versus frequency. 
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Figure 4.12 shows a surface plot of the magnitude of Eq. (4.12) varying the parameters fa 

grouped as fa + fai ^ 01+ 03- Tnis figure was created for the variation polynomial coefficients 

evaluated at CO = 32.93 rad/s. This figure shows that the magnitude of the variation polynomial is 

not a convex function of the fa (since fa repeats itself every 2% radians). If a conjugate gradient 

algorithm is used to find the minimum magnitude of a(d), the minimum computed by the 

algorithm will depend upon where the optimization is started. As Figure 4.12 shows there are an 

infinite number of minima. Fortunately, we are interested in the smallest set of destabilizing 

parameters, which creates a problem with a unique answer. 

Figure 4.13 is a Nyquist plot of the loop transfer function at the plant input. The classical 

phase margin is 46.32° at a loop gain crossover frequency of 32.93 rad/sec. If a parameter space 

hypercube is created for the fa (i= 1,2,3), there will be 23 = 8 vertices of this cube. A vertex of 

this cube maps into the point F/ in Figure 4.13. 

In the deGaston-Safonov real stability margin calculation, a straight line in the real parameter 

space maps into a straight line in the Nyquist plane. Thus, a convex hull formed from the mapped 

vertices contains the entire image of the hypercube. This is not true for complex uncertainties. As 
Figure 4.13 shows, a straight line in the 0-parameter space maps into an arc in the Nyquist plane. 

The convex hull formed from the mapped vertices will not contain the mapping of the edges of the 

hypercube, let alone the entire image of the hypercube. This precludes the use of the same analysis 

software for both types of uncertainties. 

Our optimization results, which minimize the magnitude of Eq. (4.12), are shown in Figure 
4.14 and indicate that no combination of the fa's will destabilize the system at low and high 

frequencies. Only in a small interval near the loop gain crossover frequency can this system be 

destabilized. This is shown in Figure 4.14. Figure 4.14 is a plot of the minimum variation 

polynomial magnitude as a function of frequency. 

A multivariable phase margin can be defined as follows: 

(ppM = min {fa e [-K, n\ -$max < fa < <t>max I det[I - AM] * 0 Vfi)} (4.13) 
<t>max 

This is equivalent to defining a hypercube in the fa parameter space, expanding this cube, and 

guaranteeing that all combinations of the fa interior to this cube result in a stable system. Figure 

4.15 shows the destabilizing phase variations plotted as a solid curve in the 3-dimensional <p- 

parameter space, along with the largest cube tangent to the curve. Using Eq (4.13), we have $PM 
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= 23°. Note that using Eq. (4.13) does not result in the same "smallest destabilizing uncertainty" 

as using the 2-norm of the parameter uncertainties in a vector. 

If the missile autopilot loop gain transfer function L(s) is formed at the actuator input, the 

transfer function is 

Us) = e-J* (e-teKMKzis&is) + e-J**K2(s)-$-(sj) 
V °c °c       J (414) 

Note that the only nonzero coefficients of a(S) correspond to the coefficients of a(S) that multiply 

e-j(<t>i+<t>2) and e-j{h+to)t It turns out that the smallest set of destabilizing 0's, defined by the 

point tangent to the cube in Figure 4.15, predict the classical phase margin shown in Figure 4.13. 

That is min(fa + fa> Ql + fo) = 46.32°, indicating agreement with the variation polynomial 

prediction of stability. 

To further demonstrate our approach, the variation polynomial approach is presented for a roll- 

yaw autopilot analysis problem. Like the pitch autopilot analysis problem, the problem is to place 

a complex exponential e~^ in each input and output channel, and determine the smallest set of 

0's that can destabilize the missile. Figure 4.16 shows a signal flow graph with the phase 

uncertainties added at the inputs and outputs of this missile system. In this example, the smallest 

destabilizing uncertainties are found by stacking the 0's in a vector, and using the 2-norm of that 

vector as a measure of size. 

Figure 4.17 shows the singular values versus frequency of the loop transfer function matrix 

without the phase uncertainties. The loop gain crossover frequency, defined to be the largest 

frequency where the maximum singular value of the loop transfer function matrix is unity (0 dB), 

is near 18 rad/s. Our results will show that it is in this frequency region, the region near the loop 

gain crossover frequency, that the parameter uncertainties can destabilize this system. 

The variation polynomial for this system is 

a{8) = aT8 

Where aT =[OQ a^ a-j a\Q an a^] and 

5' = \ e-J{<h+<t>4) e-J{<t>2+h) e-j(<t>i+<t>4) e-i{<t>\+h) e-j(4>i+<t>2+fo+t (4.14) 
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Only 5 of the 24 = 16 polynomial coefficients are non-zero. The remaining 10 coefficients of a 

are zero for all frequencies and all angles-of-attack. 

Figure 4.18 shows the absolute value of the non-zero coefficients versus frequency. Figure 

4.19 presents the minimum value of the objective function F = \aTö](*)   as a function of 

frequency. Note that only in a small region near the loop gain crossover frequency does the 

objective function actually become zero. At the other frequencies no combination of the phase 
parameters destabilize the system (change the number of encirclements of the det[I - AM]) 

Figure 4.20 shows the 2-norm of the <j) 's (2-norm of [fa fa <fo 04]) returned from our 

algorithm at the same objective function values as shown in Figure 4.19. Only in the frequency 

range between 4 and 20 rad/s can the system be destabilized by these phase variations. 

A simple mixed (real and complex) uncertainty model has also been used to test ROBUSTC. 
The model contains one real parameter uncertainty (Sk) and one complex parameter uncertainty 

(e~J<t>), and is shown in Figure 4.21. ROBUSTC correctly computed the gain and phase margins 

for this SISO control system model. 
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Figure 4.12 Variation polynomial magntiude at GO = 32.93 rad/s. 
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Figure 4.13 Acceleration autopilot Nyquist analysis. 
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Figure 4.14 Pitch autopilot variation polynomial magntiude. 
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Figure 4.15 Largest stable parameter hypercube. 

Figure 4.16 Roll-Yaw Signal Flow Graph Analysis Model 
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Figure 4.17 Roll-yaw loop gain singular value frequency response. 

96 

McDonnell Douglas Corporation 



Report MDC95P0058 Nonlinear Control of Missiles 

1 | 1—i i 11 mi 1—i ii 11 in 1—i > 11 nil 1—I  I 11 

o 

« 

e 
a 
o 
N 

8.9 - 

8.8 - 

8.7 

8.6 

8.5 

8.4 

8.3 

8.2 

8.1 

5,- J i i 11 in J '   i  ■ i i in I L_l_k 

IB"2 IB"1 18" IB1 

Frequency   (rad'sec) 

IB« 

Figure 4.18 Roll-yaw variation polynomial coefficient magnitudes. 
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Figure 4.19 Roll-yaw variation polynomial magnitude. 

-98- 

McDonnell Douglas Corporation 



Report MDC 95P0058 Nonlinear Control of Missiles 

« 

H 
0 
fa 
0 
N 
0 
* 

to 
o 
I 
fa e r 
i 

N 

Frequency   (pad/sec) 

Figure 4.20 2-Norm of the destabilizing $ parameter vector. 
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Mixed Real-Complex Parameter Problem (Gain/Phase Margin Example) 

20(1+8k) e* 

83+7s2+10s 

el». 1    out 

Characteristic Equation 

s3+7s2+10s + 20(1 +   8k)e'*=0 

Analytic Results 

Phase margin: 35.79 deg @1.5224 rad/sec 

Gain margin: 10.88 dB @ 3.1622776 rad/sec 

ROBUSTC Results 

@ co = 3.1622776 rad/sec: 

Sk = 2.5000 

@co= 1.5224 rad/sec: 

8k = 9.6e"7 

e'*=.6246rad 

Figure 4.21 Gain and phase margin example. 
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Simulated Annealing Trade Study 

In our application of simulated annealing, the annealing algorithm is used to start a conjugate 

gradient algorithm that minimizes the variation polynomial. The objective function is not a convex 

function, so local minima can result, depending upon where the algorithm is started. The 

annealing algorithm, by jumping all over the parameter space for the uncertainties, and starting the 

conjugate gradient algorithm at each jump, finds the smallest set of destabilizing parameter 

uncertainties. 

Simulated annealing finds the global minimum by jumping around in the parameter space (due 

to the high temperatures) and evaluating the cost at each jump. The smallest cost and parameters 

associated with that cost are stored for retrieval. The algorithm stops when the process has 

sufficiently cooled, as specified by the final temperature. 

The choice of the final temperature effects the final outcome of the analysis. If the final 

temperature is specified at too high a level, the global minimum may not be found. Figure 4.22 

illustrates trade study results varying the simulated annealing final temperature. Shown in the 

figure is a plot of final temperature versus CPU time, analyzing the pitch autopilot analysis 

problem given in Eq. (4.12). The shaded region illustrates the numerical value (for this problem) 

where the algorithm generated identical final values for the minimum. If a final temperature was 

set higher than this value the smallest set of parameters (using the 2-norm) was not found by the 

algorithm. Thus, to us simulated annealing effectively, low final temperatures must be used. 
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Figure 4.22 Simulated annealing final temperature versus CPU time. 

102 

McDonnell Douglas Corporation 



Report MDC 95P0058 Nonlinear Control of Missiles 

4.4   Conclusions 

Our results show that the magnitude of the coefficients of the variation polynomial vary rapidly 

within a certain range near the loop gain crossover frequency. From the optimization results it is 

clear that the objective function takes on it's minimum value, which can be considered as zero, in 

this same frequency range indicating that the system is destabilized by the complex parameter 

variations. The simulated annealing/conjugate gradient algorithm gives the exact parameter values 

that destabilize the system. 

These results show that it is possible to develop parameter space based analysis tests for 

dynamic uncertainties, including the class of problems in which the parameters do not appear 

linearly-fractionally in the analysis model. Thus, the variation polynomial approach gives an exact 

estimate of complex parameter variations for the system to stable. 

Although this algorithm suffers from an exponential explosion in calculations (2" at least once) 

we have found that the computation times are very reasonable for problem of interest in aircraft and 

missile flight control. 
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Appendix A 

Nonlinear Hoo Software Documentation 

The software that generates the nonlinear H^ control is applicable to nonlinear systems of the 

form 

x = Ax + Af(x) + Gxu + G2w 

z = Cx + D\U + D2w 
(A.1) 

where Af(x) is o(x2). For the nonlinear system described in Eq. (A.1), the HJI equation for 

optimal state feedback nonlinear //«, control is 

xTCTCx - xTCTSR~lSTCx + V*X(AX + Af(x) - BRTWCX) -\V*xBRTlBTV? = 0    (A.2) 

where 

B = [GX    G2] 

R = 'D[L>I      D[D2 

and 7 is the attenuation level given by a linear Hx gain scheduled control design. 

Let V(x) represent a Lyapunov function of the form 

V(x) = xTXx + AV(x) (A-3) 

with AV(x) = 0(x3). Using this definition for V(x), substitute the gradient Vx(x) into the HJI 

equation in Eq. (A.2). The result is 

xT(xÄ + ÄTX + Q + XRx)x + 2xTXAf + AVx[Fx + Af] + ± -AVXRAVX = 0 

where 
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Ä = A-BR~1STC 

Q = CT(l-SR~lST)jC 

R = -BR~lBT 

F = A + RX 

Let X be the solution to the (linear) Algebraic Riccati Equation (ARE): 

XT XA + A1X + Q + XRX = 0. (A.4) 

Then 

f 
XA + A'X + Q + XRX 
< y / 

=0 

x + lx'XAf + AV, Fx + Af] + i< AVXRAVX = 0 (A.5) 

which simplifies to 

2xTXAf + AVx\Fx + Af + \AVXRAVT
X=Q. (A.6) 

Solving this PDE for AV, and combining with the linear part in Eq. (A.4) yields the optimal state 
feedback nonlinear H^ control given by 

u(x) = [1   Ö\{-R7l)\±BT{2Xx + AVT
X) + STCx} 

The characteristic equations for the solution of the PDE in Eq. (A.6) are 

(A.7) 

dz ^- = Fz + ±Rp + Af(z) 

^ = -FTz - 2AfJXz - Afjp - 2XAf(z) 
at 

Solutions to these characteristic equations can be represented in integral form as 

(A.8) 

z(t) = e Ft x-p\eF *q(z,p)dT+\[e-Fr(Af(z) + pq(z,p))-peFrq(z,p)jdT 

oo 

+ pe~F l jeF Tq(z,p)dt 

(A.9) 
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e-Ft(Af + pq) 

x = state deviation 
from trim 

-/', 

T 
,AVX = nonlinear contribution 

tovj 

Figure A.l Computational flow computing AVX 

?r. - £.T. 
p{t) = -e-F l\eF rq(z,p)dT 

where 

q{z,p) = -AfJ(z)(2Xz + p)- 2XAf(z) (A. 10) 

and p satisfies the Lyapunov equation Fp + pFT =±R. It was shown earlier that iterations 

defined by evaluation of the right hand side of the integral equations defines a local contraction 

mapping. 

AY; is then given by 

AVi=p(0) (AM) 

and the feedback control is given by Eq. (A.7). 
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The computational flow corresponding to the iterations can be diagrammed as shown in Figure 
A.l. This structure is independent of the specific form of the nonlinearity Af.  The iteration is 
initialized at z = x, p = 0, at the start of operation, and can run continuously thereafter.  The 

T changing value of x then drives the system to provide changes in AVX . 

Alternatively, the computation can be initialized to zero at each time and a preset number of 
iterations can be generated. The nonlinear calculation needed in the iterative procedure is 

considered next. 

The nonlinear calculations for Af and -q are problem dependent. We show the computation 
of Af and -q for two examples, a 2nd order system with quadratic nonlinearity, and then our 

sixth order missile pitch autopilot design problem. These examples illustrate how the software 
calculates the parts of the integral expressions that are problem dependent. 

Second Order System With Quadratic Nonlinearity 

In this case we consider 

(A.12) z = 
zl 
z2. 0 

Define e\ = \QI, we can express Af as 

Af(z) = c1(e[z)(e1e{)z 
v     A       ; (A.13) 

= {e{z)Gz 

where G = \ ^   Ü1 • If we let w = 2Xz + p, then ■[3 a- 
-q = 2XAf + AfJw 

AfTz =2cl[e(z)elel 

and 

Aflw = 2cl(e[w)ele{z 

= (e[w)Hz 

(A. 14) 

(A.15) 
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Figure A.2 Calculation of the nonlinearities for the 2nd order problem. 

where H= 2ijl   51. A computational flow for calculating   4/ and -<?  for this example is 

shown in Figure A.2. 

Sixth Order Missile Pitch Autopilot Problem 

Consider the missile autopilot problem discussed in Section 2.2. For this problem we have 

zT =[zl    z2    z3    z4    z5    ze] 

8T = h   0   c2   0   0   0] (A16) 

hT=[c3   0   c4   0   0   0] 

ef=[l   0   0   0   0   0] 

and that 

Af(z) = (qz? + c2ziz3 + C3Z? + c4z1
2z3)e1 

(A.17) 

= f(/z)(,fz) + (^z)(erz) 2> 
«1 

To compute the gradient of Af with respect to the state vector z, 4/z, differentiate the above 

expression. This yields 
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| NonlinearCopulations v  

Figure A.3 Calculation of the nonlinearities for the 6th order missile problem. 

(A.18) 

(A. 19) 

4f,(*) = ex[{grz)e( + (efz)gT + l{hT z\e[ z)ex + (e{z) h 

Afl(z) = (gTz)eiei + («f*)W + 2(hT z)(e{ z)eie{ + («f z) V«? 

Multiplying by w results in 

4fl(z) = {gT4fi^)ei + [eh\e{w)g + 2(hTz)(elz)(e{w)el + (e{zf(e{w)h 

= (eI™)(eigT)z + (ef w\ge[)z + 2(e{z)(e{w)(eih
T)z + (elz)(e[w)(hef)2 

= {e{gT + ge{)(e{w)z + [2exh
T + he{)(e{z)(efW)z 

An implementation of this calculation is shown in Figure A.3. 

Software Implementation 

As discussed in Section 2.2, a modal representation of the matrix exponentials is used in the 
integral equations (for z and p). This representation generates linear combinations of 

exponentials with vector polynomial coefficients. The FORTRAN implementation of the 
successive approximation represents these linear combinations of exponentials with vector 
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polynomial coefficients using a pair of arrays. The coefficients are stored in a 3-dimensional array, 

with the exponents of the exponentials stored in a 1-dimensional array. 

For example, consider the following linear combination of exponentials with vector polynomial 

coefficients 

H[ö]+[?]'}"+[[iMfr3' (A20) 

This would be represented by the arrays P and PEXP as 

P[1,U] = 1 P[U,2] = 2 
P[2,l,l] = 0 P[2,l,2] = 3 
P[l,2,l] = 2 P[l,2,2] = 0 (A.2i) 
P[2,2,l] = l P[2,2,2] = 0 

PEXP[l,] = -l   PEXP[2] = -3 

The inclusion of the powers of t in the coefficients is required to handle multiple eigenvalues and 

to handle integrals of expressions (Eq. (A.9)). The range of the indices will grow as the 

computation proceeds, because of the multiplications due to the nonlinearities and the matrix 

exponential gains shown in Figure A.l. The ranges of the indices must be monitored during the 

computation to anticipate excessive array lengths. 

Procedures for clustering nearly identical terms and removal of insignificant terms must be 

implemented so that the length of the arrays does not grow too large. These thinning operations 

occur immediately after the addition and multiplication operations. 

The matrix exponential eFt is represented by a linear combination of exponentials with matrix 

polynomial coefficients (interpolating polynomials). This is a fixed length linear combination. It 
 p*        Ft Ft 

also has to be updated as F changes. Computation arrays for e , e ,and e are not 

needed since their coefficients and exponents can be inferred from the eFt arrays. Calculation of 

the matrix exponential as arrays is needed for our solution approach, and is shown in Figure A.l. 

This calculation is accomplished once the eigenvalues of F are provided using the Cayley- 

Hamilton Theorem. 

The real symmetric matrix p is also needed. This requires the solution of the n x n Lyapunov 

equation 

Fp + pFT=±R (A-22) 
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where n is the dimension of the state. This solution is accomplished by transforming Eq. (A.22) 

into a set of n(n +1) / 2 linear equations in the components of p and solving by the LU- 

decomposition. 

The solution of the Algebraic Riccati Equation (ARE) 

XÄ + ÄTX + Q + XRX = 0 

is also needed for the nonlinear computations (shown in Figure A.3). Our implementation 

considers the matrices Ä,B,Q,R as inputs and includes the eigenvalue computations on-line. This 

approach was used because we have found that the eigenvalues and eigenvectors for H^ problems 

are usually too sensitive to succumb to interpolation. 

Figure A.4 summarizes the computations made implementing our successive approximation 

solution to the integral expressions. 

The following 2nd order example is used to further illustrate the computations. Consider the 

2nd order example (quadratic nonlinearity in the first state equation) with linearized matrices 

A = -4    0 
1     -1 , B = I2, R = 1    0 

0   -1 , Q = 
14   2 
2    2 , x = 

and c\ = 0.03. From the linear H^ ARE we have X = 3   1 
1   1 

the matrix p- 
"-5 
24 

1 " 
24 

1 
24 

3 
24 

The matrices  G = 0.03   0 
0      0 

which gives F = 

and  H = \°f>   g 

0    -2J>with 

The matrix 

Ft exponential e    is given by 

.Ft n   11 „-' _1_ [0 -11 
0   0 e    + 0 1 

-It 

The software uses a vector exponential string Z to represent z{t) and Af{t) and Q to represent 

-p(t), 2Xz(t) + p(t),etc. 

The duplication is advised because in most problems the array length can become very large 
and one must economize on memory space. The nonlinearity Af(t) is represented by the array 

DF. Only one temporary array (TEMP) is used. For some applications this may not be sufficient 

so that other temporary arrays must be declared in those cases. 
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The software uses various subroutines to combine strings of exponentials or to integrate them. 

Routines ADD and MULT are used for the parts of the software which are independent of the 

nonlinearity. 

Subroutine ADD multiplies a vector string A(t) by a real constant matrix C(t) time a real 
scalar coefficient coef, and adds it to a string B(t), and returns the result in the string B(t). 

Figure A.5 illustrates the computational flow for ADD. 

Bit) + ^ BJt):= Bit) + coef * C* AJt) 

(coef   ) 
Ait)      f    Ait) 

Figure A.5 Computational flow for subroutine ADD 

The subroutine MULT multiplies a vector string B(t) by a matrix string A(t), and returns the 

result in the string B(t). 

Bit)     /^\Bit):=Ait)*ät) 
►u(r) ► 

Figure A.6 Computational flow for subroutine MULT 

The routine gives the options of multiplying by A(t), A(-t), AT(t), or AT(-t) so that only the 
one string A(t) needs to be defined in the software. Figure A.6 illustrates the computational flow 

for MULT. 
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Subroutine INT_T INF integrates a vector string from t to <~. These integrals are assumed 

to exist in our applications because of the stability of F, which is the linear H^ closed loop 

matrix. The routine evaluates expressions of the form 

oo 

J(fl! + a2r+- -+am+lt
m)ekTdz = {by + *#+• -+bm+lt

m)eXt 

t 

with Re(X)<0. Differentiating yields 

-(fll +a2t+~.+am+lt
m)eXt = (bj + 2b3t+-+mbm+lt

m-l)eXt + xfa +b2t+-+bm+itm)e^ 

Equating Uke powers of t yields 

—a\ = b2 + Xb\ 

—a2 = 2frj + Xb2 

-am = mbm+l+Xbm 

~am+l = hbm+i 

and results in the following algorithm 

am+\'-=~am+\l ^ 

am--=-{am + mam+l)/X 

a2:=-(a2+2a3)/X 

fl1:=-(a1 + o2)/A 

which returns the result in the same array as the input. 

Subroutine INT_0_T integrates a vector string from 0 to t, then adds the constant vector x to the 

result and returns the result in the same array as the input. The algorithm is derived in a manner 

similar to that of INT_ T_ INF. 

If A*0, 

-117- 

McDonnell Douglas Corporation 



Report MDC 95P0058 Nonlinear Control of Missiles 

<hn+l:= am+l I & 

am'-={am+mam+l)a 

fl2:=(fl2+2ö3)/^ 

ai'.= {ai+a2)l X 

IfA = 0, 

am+2'-=am+l/m + 1 

am+l:=am,m 

"3 

Ö2 

Al 

= a2/2 

= o\ 

= 0 

The vector x is then added to this result. 

For the calculation of the nonlinearities Af and AfJ(2Xz + p), several utility routines 

(MMULT, MULT3, ADD2) are provided which should be sufficient for incorporating most 

nonlinearities. 

Subroutine MMULT multiplies a vector string A(t) times a constant real matrix C and returns 

the result in A(t). Figure A.7 illustrates the computational flow for MMULT. 

Ait)     S~\A(i):=C*A(i) 

Figure A.7 Computational flow for subroutine MMULT 

Subroutine MULT3 evaluates a matrix string expression of the form 

C(t) = (DTA(tj)B(t) 

where A(t) and B{t) are matrix strings and D is a real vector. 
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Subroutine ADD2 multiplies vector strings A(t) and B(t) by coefACA and coefBCB, 

respectively, where coefA and coefB are real scalars and CA and CB are real matrices. The 

results are then added and returned in B(t). Figure A. 8 illustrates the computational flow for 

ADD2. 

The following calculations continue the presentation of the 2nd order example using the 

subroutines described above. This closely follows the programming in the FORTRAN program 

NLHINF diagrammed in Figure A.4. 

Starting with the following matrices: 

A= ' -4    0 
1     -] J,s = =/2, R = 

1 
0 

0 
-1 ,Q = 

14   2' 
2    2 , x = 1 

2 

q=0.03, G = 0.03   0 
0     0 , H = 0.06   0 

0     0 » 

X = 3   1' 
1   lj' F = -l   l 

0    -2 . P = 
r-5   i" 

24     24 
1       3 

.24     24. 

/< = 1    1 
0   0 e~l + 0   -1' 

0    1 e -it 

The numerical value of the state vector is xx = [l   2] . This is used to initialize z{t) in the 

following flow chart. The initial costate is p{t) = [0   0]  . 

The output from these computations are: 

-It 
i — e-< + 

2Xz + p = e-< + 

-2 
2 

-8 
0 

,-2t 
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The next computation to be performed is the calculations of Af and Afz (2Xz + p) (denoted 

nonlinear calculations in Figure A>4). The specific operations are shown in Figure A.2 in the 

boxed region. The output Af and AfJ{2Xz + p) (from Figure A.2) is 

*-[%* 
AfJ{2Xz + p) = 3.24' 

0 

e-2< + 

e~2< + 

-0.36 
0 <r3' + 

0.12 
0 

-3.6 
0 e~3t + 

0.96 
0 

Mt 

Mt 

The next computations for this example are illustrated in the following Figure 

m G)       (h 
AfJ(2Xz + p)    + 

The inputs are Af and AfJ(2Xz + p) and the outputs are denoted z (r) and p (t), as illustrated 

in the figure. Performing these calculations yields: 

z~(0 = 

P~(t) = 

0.27 
-0.27 

4.86 
4.86 

+ 

,-3f 

0.66 
0.33 e ' + -1.1 

-0.1 e~2t + 

-5.76 
-10.08 e-4'*- 1.68 

6.72 

-0.45 
0.81 

e~5t + 

e-* + 

0 
-1.44 

0.78 
-1.5 

,-6t 

e-4^ -0.07 
0.91 e-5t + -0.06 

-0.18 
,-6r 

As shown in Figure A.4, these z (r) and p (t) outputs feed the integration routines INT_0_T 

and INT_T_INF, respectively. The output from these integration routines is 

Z+(t): 

P+{t) = 

0.27 
-0.27 t + -0.66 

-0.33 e-< + 0.55 
0.05 e-2< + 

0.15 
-0.27 e'3t + 

-0.195 
0.375 

1.62 
1.62 e~3t + 

-1.44 
-2.52 e-4^ 0.336 

1.344 

+ 

-5r 

0.014 
-0.182 

0 
-0.24 

e-5t + 

,-6r 

0.01 
0.03 

Mt 

e~6t + 
1.131 
2.327 

To compute the nonlinear contribution to the control p+ (t) is evaluated at t = 0. This yields 

AVT
x=p+{t = Qi) = 0.516 

0.204 
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Ait) 

Bit) 

KC0($A ) K^y T\ ßit):= coefA *CA* Ait) 
Q—►     +coefB*CB*Bit) 

K^oefB ) ►(S)  

Figure A.8 Computational flow for subroutine ADD2 

0.516 
0.207 = 0.258 

The contribution to the control is given by 

»nonlinear = -y2R-lBTAVT
x=-y2[-Q

l    °][J    ? 

Program NLHINF 

To run this program for your own application you must 

1) First declare the following parameters 

NSTATE = dimension of the state space 

NR = dimension of the exogenous inputs 

NM = dimension of the controls 

NPMAX = maximum power of t allowed in any string coefficient 

NAMAX = maximum number of exponential terms in any string 

If either NPMAX or NAMAX are exceeded at any time during running of the program then an 

error message will be presented. 

2) You must interface with a module which supplies the matrices Ä,B,Q,R. 

3) you must specify the number of iterations desired. 

4) The nonlinearities must be defined. Expressions must be derived for Af and Afz (2Xz + p), 

and these expressions must be programmed using the utility routines MMULT, MULT3, and 

ADD2. Any constant vectors or matrices needed for this must be calculated prior to the iteration 

loop. Any of the write statements found in the software can be used to aid program checkout or 

can be commented out. 

-121- 

McDonnell Douglas Corporation 



Report MDC 95P0058 Nonlinear Control of Missiles 

Appendix B 

Nonlinear Hoo FORTRAN Software 

This appendix contains a listing of the FORTRAN software program called NLfflNF. This code 
can be obtained electronically by contacting the authors at wisek@mdcgwy.mdc.com. 

PROGRÄM NLHINF 
C 
Q   ********************************************************************** 
C NONLINEAR H-INFINITY CONTROL * 
C INPUTS ARE ATILDA,B,R AND QTILDA * 
C FORMS RTILDA * 
C FORMS HAMILTONIAN MATRIX * 
C FINDS THE EIGENVALUES AND EIGENVECTORS * 
C FORMS P MATRIX (SOLUTIONN OF LINEARIZED RICCATI EQUATION) * 
C      ATILDA'*P P*ATILDA + QTILDA  + P*B*RINVERSE*B'*P=0 * 
C FORMAS FTILDA MATRIX * 
C FORMS EXP(FTILDA*t) AND RHOHAT * 
C INCLUDES THE NONLINEAR CALCULATIONS AND * 
C PERFORMS THE ITERATIONS A PRESCRIBED NUMBER OF TIMES * 
C CALCULATES THE NONLINEAR CONTRIBUTION TO THE CONTROL * 
c ********************************************************************** 

C 
INTEGER I,J,K,L,M 
INTEGER NSTATES,NPMAX,NAMAX,NY,NR,NM 

C 
c       

c 
C     SET DIMENSIONS OF PROBLEM 

PARAMETER( NSTATES=2,NPMAX=2 0,NAMAX=3000) 
PARAMETER( NR=1) ! DIMENSION OF EXOGENOUS INPUTS 
PARAMETER( NM=1)  ! DIMENSION OF CONTROLS 

C 
c       

C 
C     INPUTS 

REAL*8 X(NSTATES) ! STATEVECTOR MINUS TRIM STATEVECTOR 
REAL*8 ATILDA(NSTATES,NSTATES),B(NSTATES,NR+NM) 
REAL*8 R(NR+NM,NR+NM) 
REAL*8 QTILDA(NSTATES,NSTATES) 
INTEGER ITER ! DESIRED NUMBER OF ITERATIONS 

C 
C     COMPUTED QUANTITIES 

REAL*8 RTILDA(NSTATES,NSTATES) 
REAL*8 HAM(2*NSTATES,2*NSTATES),WRH(2*NSTATES),WIH(2*NSTATES) 
REAL * 8 EIGVH(2 *NS TÄTE S,2 *NS TATE S) 
COMPLEX*8 EIG(NSTATES),Z1(NSTATES,NSTATES),Z2(NSTATES,NSTATES) 
REAL*8 TEMPH(2*NSTATES)  ! TEMPORARY FOR EISPACK 
INTEGER ITEMP(2*NSTATES),IERR ! FOR EISPACK 
REAL*8 BT(NR+NM,NSTATES)  ! FOR RTILDA CALCULATION 
REAL*8 RTEMP(NR+NM)     ! FOR RTILDA CALCULATION 
INTEGER INDXR(NR+NM),DD  IFOR RTILDA CALCULATION 
INTEGER INDX(NSTATES)   ! FOR FORMING P AND FTILDA 
COMPLEX*8 ATEMP(NSTATES,NSTATES),BTEMP(NSTATES)  ! FOR LUDCMPC 
REAL*8 P(NSTATES,NSTATES) 
COMPLEX*8 Z1INV(NSTATES,NSTATESJ122- 
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REAL*8 FTILDA(NSTATES,NSTATES) 
REAL*8 RHOHAT(NSTATES,NSTATES) 

C 
C     EXPONENTIAL SUMS WITH POLYNOMIAL COEFFICIENTS 

COMPLEX*8 Z(NSTATES,NPMAX+1,NAMAX),ZEXP(NAMAX) 
COMPLEX*8 Q(NSTATES,NPMAX+1,NAMAX),QEXP(NAMAX) 
COMPLEX*8 TEMP(NSTATES,NPMAX+1,NAMAX),TEMPEXP(NAMAX) 
COMPLEX*8 DF(NSTATES,NPMAX+1,NAMAX),DFEXP(NAMAX) 
COMPLEX*8 FE(NSTATES,NSTATES,NSTATES+1,NSTATES),FEEXP(NSTATES) 
INTEGER NPZ,NAZ,NPQ,NAQ,NPTEMP,NATEMP,NPDF,NADF,NPFE,NAFE 

C 
C     INTERMEDIATE QUANTITIES 

INTEGER ITERCOUNT 
REAL*8 DVXT(NSTATES) 

C 
C     OUTPUTS 

REAL*8 Y(NR+NM) ! OUTPUT VECTOR = NONLINEAR CONTRIBUTION TO CONTROL 
C 
c       
C     DECLARATIONS FOR SPECIFIC NONLINEARITIES 

PARAMETER( Cl=0.03) 
PARAMETER« PI=3.14159265) 
REAL*8 D,THETA 

C 
REAL*8 El(NSTATES),G(NSTATES,NSTATES),H(NSTATES, NSTATES) 

C 
C     PRELIMINARY PROBLEM DEPENDENT NONLINEAR CALCULATIONS 
C 
C     THE NONLINEARITY CONSIDERED IN THIS EXAMPLE IS 
C 
C     THE NONLINEARITY    |   2| 
C I zl 
C deltaf(z)= cl*| 
C I  0 
C I 
C    this requires that 
C 
C    deltaf= G*(El'*z)*z   where G=[cl,0;0,0] , E1=[1;0], 
C 
C    deltafsubz'*w = H*(El'*w)*z where H=[2*cl,0;0,0] 
C 

C     CALCULATE PRELIMINARY MATRICES 
El(l)=l. 
El(2)=0. 
G(1,1)=C1 
G(l,2)=0. 
G(2,l)=0. 
G(2,2)=0. 
H(1,1)=2*C1 
H(l,2)=0. 
H(2,l)=0. 
H(2,2)=0. 
WRITE(6,1) 
WRITE(6,*)15HTHE G MATRIX IS 

100   FORMATC G(',I2, ',',12, ') = ',E25.17) 
DO 1=1,NSTATES 
DO J=l,NSTATES 
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WRITE(6,100) I,J,G(I,J) 
END DO 

END DO 
WRITE(6,1) 
WRITE(6,*)15HTHE H MATRIX IS 

101   FORMAT(' H(',I2, ', «,I2, ') = ',E25.17) 
DO I=1,NSTATES 
DO J=1,NSTATES 
WRITE(6,101) I,J,H(I,J) 

END DO 
END DO 

C 
C     END OF PRELIMINARY MATRIX CALCULATION 
C 
c       

C 
C FORMATS FOR DIAGNOSTIC OUTPUTS 
1 FORMAT('    ') 
2 FORMAT('    NAZ=',I6,'       NPZ=',I3) 
3 FORMATC    NAQ=',I6,'       NPQ=',I3) 
5 FORMATC DVXTC,12, ') = ',E25.17) 
6 FORMATC NATEMP=',I6, '    NPTEMP=',I3) 
7 FORMATC BEGINNING OF ITERATION NUMBER ',13) 
8 FORMAT( 12) 
9 FORMATC El(l)  = ',E25.17,' El(2) = \E25.17) 
C 
C     SET DESIRED NUMBER OF ITERATIONS 

WRITE(6,*)34HENTER NUMBER OF ITERATIONS DESIRED 
READ(5,8) ITER 

C     ITER=1 
C 
C     EXTRACT DATA FOR INPUT 
C     (DUMMY VALUES ARE INSERTED FOR X,ATILDA,B,QTILDA AND R 
C      FOR TEST CASE) 
C     X(l) = 1. 
C    X(2) = 2. 
C 

WRITE(6,*) 11HENTER THETA 
READ(5,*) THETA 
WRITE(6,*) THETA 
WRITE(6,*) 7HENTER D 
READ(5,*) D 
WRITE(6,*) D 
X(1)=D*COS(THETA*PI/180.0) 
X(2)=D*SIN(THETA*PI/180.0) 

C 
C 
C 

DO I=1,NSTATES 
DO J=1,NSTATES 

ATILDA(I,J)=0. 
RTILDAd, J)=0. 
FTILDAd, J)=0. 

END DO 
DO J=1,NR+NM 
B(I, J)=0. 

END DO 
END DO 
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DO I=1,NR+NM 
DO J=l,NR+NM 
R(I,J)=0. 

END DO 
END DO 

ATILDA(1,1) = -4. 
ATILDA(1,2) = 0. 
ATILDA(2,1) = 1. 
ATILDA(2,2) = -1. 

B(l,l) = 1. 
B(2,2) = 1. 

R(l,l) = -1. 
R(2,2) = 1. 

C 
QTILDA(1,1)=14. 
QTILDA(1,2)=2. 
QTILDA(2,1)=2. 
QTILDA(2,2)=2. 

C 
10 FORMATC R(',I2, ', \I2, ') = ',E25.17) 
C     DO I=1,NR+NM 
C      DO J=1,NR+NM 
C       WRITE(6,10) I,J,R(I,J) 
C      END DO 
C END DO 
C 
11 FORMATC B(',I2, ', ',12, ') = ',E25.17) 
C DO I=1,NSTATES 
C DO J=1,NR+NM 
C WRITE(6,11) I,J,B(I,J) 
C END DO 
C END DO 
C 
Q ************************************************************ 
C     FORM RTILDA MATRIX 
C 
Q ********************************************** 
C     *  RTILDA=-B*RINVERSE*BTRANSPOSED * 
C     ********************************************** 

C 
CALL LUDCMPR(R,NR+NM,NR+NM,INDXR,DD) 
DO 1=1,NR+NM 
DO J=1,NSTATES 
BT(I, J)=B(J,I) 

END DO 
END DO 
DO I=1,NSTATES 
DO J=l,NR+NM 
RTEMP(J)=BT(J,I) 

END DO 
CALL LUBKSBR(R,NR+NM,NR+NM,INDXR,RTEMP) 
DO J=1,NSTATES 
RTILDA(I,J)=0. 
DO K=l,NR+NM 
RTILDA(I,J)=RTILDA(I,J)-B(J,K)*RTEMP(K) 
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END DO 
END DO 

END DO 
C 
12 FORMAT(' RTILDA(',I2,',',12,')=•,E25.17) 
C DO I=1,NSTATES 
C DO J=1,NSTATES 
C WRITE(6,12) I,J,RTILDA(I,J) 
C END DO 
C END DO 
C 
C 
C 
C FORM HAMILTONIAN MATRIX 
C 
Q ******************************** 

c *                         * 
C *      I ATILDA     RTILDA   | * 
C *  H = |                       I * 
C *      | -QTILDA    -ATILDA' | * 
C *                              * 
n ******************************** 

**************************************************** 

DO I=1,NSTATES 
DO J=1,NSTATES 
HAM(I,J)=ATILDA(I, J) 
HAM(I,J+NSTATES)=RTILDA< I, J) 
HAM(I+NSTATES,J)=-QTILDA(I, J) 
HAM(I+NSTATES,J+NSTATES)=-ATILDA(J,I) 

END DO 
END DO 

C 
13 FORMATC HAM(',I2,',',12,')=',E25.17) 
C     WRITE(6,1) 
C     DO I=1,2*NSTATES 
C      DO J=1,2*NSTATES 
C       WRITE(6,13) I,J,HAM(I,J) 
C      END DO 
C      WRITE(6,1) 
C     END DO 
C 
C     SOLVE FOR EIGENVALUES AND EIGENVECTORS OF HAMILTONIAN 

CALL ZZ_RG(2*NSTATES,2*NSTATES,HAM,WRH,WIH,1, 
* EIGVH,ITEMP,TEMPH,IERR) 

C 
C 
14 FORMATC EIGH(',I2, ') = ',E25.17, ', \E25.17) 
C WRITE(6,1) 
C WRITE(6,*)34HEIGENVALUES OF THE HAMILTONIAN ARE 
C DO I=1,2*NSTATES 
C WRITE(6,14) I,WRH(I),WIH(I) 
C END DO 
C 
C 
15 FORMATC EIGVH(',I2, ', ',12, ') = ',E25.17) 
C     WRITE(6,1) 
C     DO J=1,2*NSTATES 
C      DO I=1,2*NSTATES 
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C WRITE(6,15) I,J,EIGVH(I,J) 
C END DO 
C WRITE(6,1) 
C END DO 
C 
Q ************************************************************* 

C 
C     SELECT STABLE EIGENVALUES AND CORRESPONDING EIGENVECTORS 
C 
Q ********************************************** 

C       * * 
C * I Zl I    I Zl I * 
C * H * I 1=1 I * DIAG( EIGH)   * 
C * | Z2 |    I Z2 | * 
C * * 
Q ********************************************** 

C 
C     BUILD Zl AND Z2 MATRICES 

K=0 
DO I=1,2*NSTATES 
IF(WRH(I).LT.0.) THEN 
K=K+1 
EIG(K)=CMPLX(WRH(I),WIH(I)) 
IF(WIH(I).EQ.O.) THEN 
DO J=1,NSTATES 
Z1(J,K)=EIGVH(J,I) 
Z2(J,K)=EIGVH(J+NSTATES,I) 

END DO 
END IF 
IF(WIH(I).GT.O.) THEN 
DO J=1,NSTATES 
Zl(J,K)=CMPLX(EIGVH(J,I),EIGVH(J, 1 + 1) ) 
Z2 (J,K)=CMPLX(EIGVH(J+NSTATES,I)',EIGVH(J+NSTATES,I + 1) ) 

END DO 
END IF 
IF(WIH(I).LT.O.) THEN 
DO J=1,NSTATES 
Z1(J,K)=CMPLX(EIGVH(J,I-1),-EIGVH(J,I)) 
Z2(J,K)=CMPLX(EIGVH(J+NSTATES,I-1),-EIGVH(J+NSTATES, I)) 

END DO 
END IF 

END IF 
END DO 

C 
16 FORMATC Z1(',I2, ', ',12, ') = \E25.17, ', ',E25.17) 
C WRITE(6,1) 
C DO J=1,NSTATES 
C DO I=1,NSTATES 
C       WRITE(6,16) I,J,REAL(Z1(I,J)),IMAG(Z1(I,J)) 
C END DO 
C WRITE(6,1) 
C END DO 
C 
17 FORMATC Z2(',I2,',',12,')=',E25.17,',',E25.17) 
C WRITE(6,1) 
C DO J=1,NSTATES 
C DO I=1,NSTATES 
C       WRITE(6,17) I,J,REAL(Z2(I,J)),IMAG(Z2(I,J)) 
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C      END DO 
C      WRITE(6,1) 
C END DO 
C 
C 
18 FORMAT(' EIG(',I2,')=',E25.17,',',E25.17) 
C WRITE(6,1) 
C DO 1=1,NSTATES 
C      WRITE (6, 18) I,REAL(EIG(I)),IMAG(EIG(D) 
C END DO 
C Q ******************************************************* 

c 
C     FORM SOLUTION TO THE ALGEBRAIC RICCATI EQUATION 

C 
Q *************************** 
C     *    P=Z2*Z1INVERSE       * 
Q *************************** 

C 
DO I=1,NSTATES 
DO J=1,NSTATES 
ATEMP(I,J)=Z1(J,I) 

END DO 
END DO 
CALL LUDCMPC(ATEMP,NSTATES,NSTÄTES,INDX,DD) 
DO I=1,NSTATES 
DO J=1,NSTATES 
BTEMP(J)=Z2(I, J) 

END DO 
CALL LUBKSBC(ATEMP,NSTATES, NSTATES,INDX,BTEMP) 
DO J=1,NSTATES 
P(I, J)=REAL(BTEMP(J) ) 

END DO 
END DO 

C 
C 

DO I=1,NSTATES 
DO J=1,NSTATES 
BTEMP(J)=0. 

END DO 
BTEMP(I)=1. 
CALL LUBKSBC(ATEMP,NSTATES,NSTATES,INDX,BTEMP) 
DO J=l,NSTATES 
Z1INVU, J)=BTEMP(J) 

END DO 
END DO 

C 
C 
19 FORMATC P(\I2, ', '12, ') = ',E25.17) 

DO 1=1,NSTATES 
DO J=l,NSTATES 
WRITE(6,19)I,J,P(I, J) 
END DO 

END DO 
CALL TESTP(ATILDA,QTILDA,RTILDA,P,NSTATES) 

C 
r ****************^ 
C     FORM FTILDA MATRIX 

c************************************* 
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c 
Q *********************************** 
C     *  FTILDA=Z1*DIAG*EIG)*Z1INVERSE  * 
Q *********************************** 

C 
DO I=1,NSTATES 
DO J=1,NSTATES 
BTEMP(J)=EIG(J)*Z1(I,J) 

END DO 
CALL LUBKSBC <ATEMP,NSTATES,NSTATES,INDX,BTEMP) 
DO J=1,NSTATES 
FTILDA(I,J)=BTEMP(J) 

END DO 
END DO 

C 
20 FORMAT(' FTILDA(',12,',',12,«)=',E25.17) 

DO I=1,NSTATES 
DO J=1,NSTATES 
WRITE(6,20) I,J,FTILDA(I,J) 
END DO 

END DO 
CALL TESTF(ATILDA,RTILDA,P,FTILDA,NSTATES) 

C 
c    *********************************************************** 
C     FORM RHOHAT MATRIX 
C 
Q ************************************************* 

C       * * 
C     *   FTILDA*RHOHAT + RHOHAT*FTILDA' = RTILDA/2   * 
C     * * 
Q        ************************************************* 

C 
CALL RHAT(FTILDA,RTILDA,RHOHAT,NSTATES) 

21 FORMAT (' RHOHAT (',12, ', ',12, ' ) = \E25.17) 
DO 1=1,NSTATES 
DO J=l,NSTATES 
WRITE(6,21) I,J,RHOHAT(I, J) 

END DO 
END DO 

C 
C     FORM MATRIX EXPONENTIAL 

NPFE=0 
NAFE=NSTATES 
DO 1=1,NSTATES 
DO J=l,NSTATES 
DO L=l,NSTATES 
FE(I, J, 1,L)=Z1(I,L)*Z1INV(L,J) 

END DO 
END DO 
FEEXP(I)=EIG(I) 

END DO 
C 
C 
Q ******************************************************** 

C     FORM MATRIX EXPONENTIAL 
C 
C     CALL MATEXP(FTILDA,EIG,FE,FEEXP,NPFE,NAFE,NSTATES,NSTATES) 

C 
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CALL WRITEXP(FE,FEEXP,NPFE,NAFE,NSTATES) 

C 
Q ******************************************************** 

C 
c 
C     INITIALIZE Z,ZEXP,Q,QEXP 
C 

NPZ=0 
NAZ=1 
DO L=1,NAZ 
ZEXP(L)=0. 
DO I=1,NSTATES 
DO K=1,NPZ+1 
Z(I,K,L)=X(I) 

END DO 
END DO 

END DO 
C 

NPQ=0 
NAQ=1 
DO L=1,NAQ 
QEXP(L)=0. 
DO I=1,NSTATES 
DO K=1,NPQ+1 
Q(I,K,L)=0. 

END DO 
END DO 

END DO 
WRITE(6,1) 
WRITE(6,*)20HAFTER INITIALIZATION 

C 
CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ, 

* NSTATES,NPMAX,NAMAX) 

C 
C 
C     START ITERATIONS ***************************************** 

C 
DO ITERCOUNT=l,ITER 
WRITE(6,7) ITERCOUNT 
WRITE(6,2) NAZ,NPZ 

WRITE(6,1) 
WRITE(6,*)25HAT BEGINNING OF ITERATION 

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

CALL ADD(Q,QEXP,NPQ,NAQ,Z,ZEXP,NPZ,NAZ,l.,RHOHAT, 
* NSTATES,NPMAX,NAMAX) 

WRITE(6,*)15HAFTER FIRST ADD 

WRITE(6,2) NAZ,NPZ 

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

CALL MULT(FE,FEEXP,NPFE,NAFE,Z,ZEXP,NPZ,NAZ,TEMP,TEMPEXP, 
* NSTÄTES,NPMAX,NAMAX,0,0) 
WRITE(6,*)16HAFTER FIRST MULT 
WRITE(6,2) NAZ,NPZ 
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CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 
C 

CALL MULT(FE,FEEXP,NPFE,NAFE,Q,QEXP,NPQ,NAQ,TEMP,TEMPEXP, 
* NSTATES,NPMAX,NAMAX,1,1) 
WRITE(6,*)11HSEC0ND MULT 
WRITE(6,3) NAQ,NPQ 

C 

C 

C 

C 

CALL WRITE_ZQ(Z, ZEXP, NPZ,NAZ, Q,QEXP, NPQ, NAQ, NSTATES,NPMAX,NAMAX) 

CALL ADD(Q,QEXP,NPQ,NAQ,Z,ZEXP,NPZ,NAZ,-l.,RHOHAT, 
* NSTATES,NPMAX,NAMAX) 
WRITE(6,*)16HAFTER SECOND ADD 
WRITE(6,2) NAZ,NPZ 

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

CALL ADD(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,2.,P, 
* NSTATES,NPMAX,NAMAX) 

WRITE(6,*)20HAFTER THIRD ADD **** 
WRITE(6,3) NAQ,NPQ 

C 
CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

c       

C 
C        NONLINEAR PROBLEM DEPENDENT PART OF ITERATION****************** 
C 
C        CALCULATE DELTA F 
C 

WRITE(6,9)E1(1),E1(2) 
CALL MULT3(E1,Z,ZEXP,NPZ,NAZ,Z,ZEXP,NPZ,NAZ, 

* DF,DFEXP,NPDF,NADF,NSTATES,NPMAX,NAMAX) 
WRITE(6,*)10HFIRSTMULT3 

C 

C 

C 

C 

CALL WRITE_ZQ(DF,DFEXP,NPDF,NADF,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

CALL TRIM_NA(DF,DFEXP,NPDF,NADF,NSTATES,NPMAX,NAMAX,0.0000001) 
WRITE(6,*)24HTRIMNA AFTER FIRST MULT3 

CALL WRITE_ZQ(DF,DFEXP,NPDF,NADF,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

CALL MMULT(G,DF,DFEXP,NPDF,NADF,NPMAX,NAMAX,NSTATES) 
WRITE(6,*)11HFIRST MMULT 
WRITE(6,6) NADF,NPDF 

C 
CALL WRITE_ZQ(DF,DFEXP,NPDF,NADF, Q,QEXP, NPQ, NAQ, NSTATES,NPMAX,NAMAX) 

C 
C        CALCULATE MINUS Q 
C 

CALL MULT3(El,Q,QEXP,NPQ,NAQ,Z,ZEXP,NPZ, NAZ, 
* TEMP,TEMP EXP,NP TEMP,NATEMP,NS TATE S,NPMAX,NAMAX) 

WRITE(6,*)18HAFTER SECOND MULT3 
WRITE(6,6) NATEMP,NPTEMP 

C 
CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,TEMP,TEMPEXP,NPTEMP, NATEMP, 

* NSTATES,NPMAX,NAMAX) 
C 

CALL MMULT(H,TEMP,TEMPEXP,NPTEMP,NATEMP,NPMAX,NAMAX,NSTATES) 
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WRITE(6,*)18HAFTER SECOND MMULT 
C 

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,TEMP,TEMPEXP,NPTEMP,NATEMP, 
* NSTATES,NPMAX,NAMAX) 

C 
CALL COPY(TEMP,TEMPEXP,NPTEMP,NATEMP,Q,QEXP,NPQ,NAQ, 

* NSTATES,NPMAX,NAMAX) 
CALL COPY(DF,DFEXP,NPDF,NADF,Z,ZEXP,NPZ,NAZ, 

* NSTATES,NPMAX,NAMAX) 
WRITE(6,*)10HAFTER COPY 
WRITE(6,3) NAQ,NPQ 

C 
CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

C 
C        END OF PROBLEM DEPENDENT NONLINEAR CALCULATIONS************** 

C 
c       

c 
CALL ADD(Z, ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,2.,P, 

* NS TATE S,NPMAX,NAMAX) 
WRITE(6,*)16HAFTER FOURTH ADD 

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

CALL TRIM_NA(Z,ZEXP,NPZ,NAZ,NSTATES,NPMAX,NAMAX,0.000001) 
WRITE(6,*)18HAFTER FIRST TRIMNA 

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

CALL TRIM_NA(Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX,0.000001) 
WRITE(6,*)19HAFTER SECOND TRIMNA 

C 
CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

C 
C      NON-PROBLEM DEPENDENT CALCULATIONS 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

CALL ADD(Q,QEXP,NPQ,NAQ,Z,ZEXP,NPZ,NAZ,-l.,RHOHAT, 
* NS TÄTE S,NPMAX,NAMAX) 
WRITE(6,*)15HAFTER FIFTH ADD 
WRITE(6,2) NAZ,NPZ 

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

CALL MULT(FE,FEEXP,NPFE,NAFE,Z,ZEXP,NPZ,NAZ,TEMP,TEMPEXP, 
* NSTATES,NPMAX,NAMAX, 0,1) 

WRITE(6,*)16HAFTER THIRD MULT 
WRITE(6,2) NAZ,NPZ 

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

CALL MULT(FE,FEEXP,NPFE,NAFE,Q,QEXP,NPQ,NAQ,TEMP,TEMPEXP, 
* NSTATES,NPMAX,NAMAX,1,0) 

WRITE(6,*)17HAFTER FOURTH MULT 
WRITE(6,3) NAQ,NPQ 

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

CALL ADD(Q,QEXP,NPQ,NAQ,Z,ZEXP,NPZ,NAZ, l.,RHOHAT, 
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* NSTATES,NPMAX,NAMAX) 
WRITE(6,*)15HAFTER SIXTH ADD 
WRITE(6,2) NAZ,NPZ 

C 

C 

C 

C 

C 
C 

C 

C 

C 
C 

c 

c 

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

CALL INT_0_T(X,Z,ZEXP,NPZ,NAZ,NSTATES,NPMAX,NAMAX) 
WRITE(6,*)15HAFTER INTO TO T 
WRITE(6,2) NAZ,NPZ 

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

CALL INT_T_INF(Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 
WRITE(6,*)17HAFTER INTT TO INF 
WRITE(6,3) NAQ,NPQ 

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

CALL TRIM_NA(Z,ZEXP,NPZ,NAZ,NSTATES,NPMAX,NAMAX,0.000001) 
WRITE(6,*)18HAFTER THIRD TRIMNA 

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX) 

CALLTRIM_NA(Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX,0.000001) 
WRITE(6,*)20HAFTER FOURTH TRIMNA* 
END DO !! END OF ITERATIONS ****************************** 

CALL WRITE ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES, NPMAX,NAMAX) 

CALL ZEROEVAL(Q,NPQ,NAQ,DVXT,NSTATES,NPMAX,NAMAX) 
DO 1=1,NSTATES 
WRITE(6,5) I,DVXT(I) 

END DO 
C 
Q ************************************************************ 

C     COMPUTE NONLINEAR CONTRIBUTION TO THE CONTROL 
Q ***************************************** 
C     * Y=-0.5*RINVERSE*BTRANSPOSE*DVDXT * 

***************************************** 

DO I=1,NR+NM 
Y(I)=0. 
DO J=l,NSTATES 
Y(I)=Y(I)-BT(I,J)*DVXT(J)/2. 

END DO 
END DO 
CALL LUBKSBR(R,NR+NM,NR+NM,INDXR, Y) 

C 
WRITE(6,1) 
WRITE(6,*)37HNONLINEAR CONTRIBUTION TO THE CONTROL 

22    FORMAT(• Y(',12,')=',E24.17) 
DO 1=1,NM 
WRITE(6,22) I,Y(I) 

END DO 
C     STOP 

END   INLHINF 
************************************************************* 
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Q ************************************************************* 

SUBROUTINE RHAT(F,RTILDA,RHOHAT,NSTATES) 

C 
C 
C 
C     *   F*RHOHAT + RHOHAT*F' = RTILDA/2 * 

C 
c     ************************************************* 

C 
INTEGER NSTATES,NMAX,NNMAX 
PARAMETER( NMAX=20) 
PARAMETER{ NNMAX=(NMAX*(NMAX+1))/2) 
INTEGER NN,INDX(NNMAX) 
REAL*8 F(NSTATES,NSTATES),RTILDA(NSTATES, NSTATES) 
REAL*8 RHOHAT(NSTATES,NSTATES) 
REAL*8 R(NMAX,NMAX) 
REAL*8 FF(NNMAX,NNMAX),RR(NNMAX) 
REAL*8 D 
INTEGER I,J 

C 
NN=(NSTATES*(NSTATES+1))/2 

C     R=RTILDA/2 
C 

DO 1=1,NSTATES 
DO J=l,NSTATES 
R(I,J)=RTILDA(I,J)12. 

END DO 
END DO 
CALL STACK2(F,FF,NSTATES,NN,NNMAX) 
CALL STACK1(R,RR,NSTATES,NN,NMAX,NNMAX) 
CALL LUDCMPR(FF,NN,NNMAX,INDX,D) 
CALL LUBKSBR(FF,NN,NNMAX,INDX,RR) 
CALL UNSTACK(RR,RHOHAT,NSTATES,NN) 
RETURN 
END  !RHAT 

c     ************************************************************* 
c       ************************************************************* 

SUBROUTINE UNSTACK(XX,X,N,NN) 
Q ******************************************** 

C     *    INVERSE OF SUBROUTINE STACK1 * 
Q     ******************************************** 

REAL*8 X(N,N),XX(NN) 
INTEGER I,J,N,NN,M 

C 
M=l 
DO 1=1,N 
DO J=I,N 
X(I, J)=XX(M) 
X(J, I)=XX(M) 
M=M+1 
END DO 

END DO 
RETURN 
END   !UNSTACK 
************************************************************* 
************************************************************* 
SUBROUTINE STACK1(X,XX,N,NN,NMAX,NNMAX)     ! NN=(N*(N+l))/2 
********************************************************** 
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C * X is an N by N symmetric matrix * 
C * XX is an NN by 1 stacked version of X proceeding along * 
C * portions of rows on and above the diagonal * 
Q ********************************************************** 

REAL*8 X{NMAX,NMAX),XX(NNMAX) 
INTEGER I,J,II 

C 
11=1 
DO 1=1,N 
DO J=I,N 
XX(II)=X(I, J) 
11=11+1 

END DO 
END DO 
RETURN 
END ISTACK1 

Q ************************************************************* 
Q ************************************************************* 

SUBROUTINE STACK2(A,AA,N,NN,NNMAX)     ! NN=(N*(N+l))/2 
Q ************************************************************ 

C * Changes the A matrix in A*X+X*Atranspose=B (with X and B * 
C * symmetric) into the AA in AA*XX=BB where XX and BB are  * 
C * stacked versions of X and B respectively * 
Q ************************************************************ 

REAL*8 A(N,N), AA(NNMAX,NNMAX) 
INTEGER I,J,K,II,JJ,N,NN 

C 
C 

DO 11=1,NN 
DO JJ=1,NN 
AA(II,JJ)=0.0 

END DO 
END DO 

C 
11=1 
DO 1=1,N 
DO J=I,N 
DO K=1,N 
CALL STACK(N,K,J, JJ) 
AA(11,JJ)=AA(II,JJ)+A(I, K) 
CALL STACK(N,K,I, JJ) 
AA(II,JJ)=AA(II,JJ)+A(J,K) 

END DO 
11=11+1 

END DO 
END DO 

C 
RETURN 
END   !STACK2 

Q ************************************************************* 
C     ************************************************************* 

SUBROUTINE STACK(N,I,J, II) 
Q ********************************************************* 
C     * TRANSFORMS ROW AND COLUMN INDICES OF N BY N SYMMETRIC * 
C     * MATRIX TO INDEX OF THE STACKED MATRIX * 
Q ********************************************************* 

INTEGER N,I,J,II 
IF(J.GE.I) II=((2*N-I)*(I-1))/2+J 
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IF(J.LT.I) 11=((2*N-J)*(J-l))/2+I 
RETURN 

END   !STACK 
Q ************************************************************* 

************************************************************* 
SUBROUTINE LUDCMPR(A,N,NP,INDX,D) 

c    Given an nxn matrix a, with physical dimension np, this 
c    routine replaces it by the rowise permutation of itself. 
c    A and N are input, A is output. INDX is an output vector 

which records the row permutation effected by the partial 
c    pivoting; D is output as +1 or -1 depending on whether the 
c    number of row interchanges was even or odd, respectively. 
c    This routine is used in combination with LUBKSBR to solve 
c    linear equations or invert a matrix. 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
c 
1    FORMAT(' Singular matrix in LUDCMPR') 

PARAMETER (NMAX=100,TINY=1.Oe-20) 
DIMENSION A(NP,NP),INDX(N) ,W(NMAX) 
D=1.0 

C 
DO 1=1,N 
AAMAX=0.0 
DO J=1,N 
IF (ABS(A(I,J)) .GT.AAMAX) AAMAX=ABS(A(I, J)) 

END DO 
IF (AAMAX.EQ.0.0) WRITE(6,1)   !singular matrix 
IF (AAMAX.EQ.0.0) PAUSE        !singular matrix 
W(I)=1.0/AAMAX 

END DO 
DO J=1,N 
IF (J.GT.l) THEN 
DO 1=1,J-l 
SUM=A(I,J) 
IF (I.GT.l) THEN 
DO K=1,I-1 
SUM=SUM-A(I,K)*A(K,J) 

END DO 
A(I, J)=SUM 

END IF 
END DO 

END IF 
AAMAX=0.0 
DO I=J,N 
SUM=A(I, J) 
IF (J.GT.l) THEN 
DO K=l,J-l 
SUM=SUM-A(I,K)*A(K,J) 

END DO 
A(I, J)=SUM 

END IF 
DUM=W (I) *ABS (SUM) 
IF (DUM.GE.AAMAX) THEN 
IMAX=I 
AAMAX=DUM 

END IF 
END DO 
IF (J.NE.IMAX) THEN 
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DO K=1,N 
DUM=A(IMAX,K) 
A(IMAX,K)=A(J,K) 
A(J,K)=DUM 

END DO 
D=-D 
W(IMAX)=W(J) 

END IF 
INDX(J)=IMAX 
IF (J.NE.N) THEN 
IF (A(J,J).EQ.0.0) A(J,J)=TINY 
DUM=1.0/A(J,J) 
DO I=J+1,N 
A(I, J)=A(I,J)*DUM 

END DO 
END IF 

END DO 
IF (A(N,N).EQ.0.0) A(N,N)=TINY 
RETURN 
END    !LUDCMPR 

Q ************************************************************* 
Q ************************************************************* 

SUBROUTINE LUBKSBR(A,N,NP,INDX, B) 
C    Solves the set of N linear equations A*X=B. Here A is input 
C    not as the matrix A but rather as its LU decomposition, 
C    determined by the routine LUDCMPR. B is input as the right-hand 
C    side vector B, and returns with the solution vector X. A,N,NP 
C    and INDX are not modified by this routine and can be left in 
C    place for successive calls with different right-hand sides B. 
C    This routine takes into account the possibility that B will 
C    begin with many zero elements, so it is sufficient for use in 
C    matrix inversion 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
DIMENSION A(NP,NP),INDX(N),B(N) 
11=0 
DO 1=1,N 
LL=INDX(I) 
SUM=B(LL) 
B(LL)=B(I) 
IF (II.NE.O) THEN 
DO J=II,I-1 
SUM=SUM-A(I,J)*B(J) 

END DO 
ELSE IF (SUM.NE.O) THEN 
11=1 

END IF 
B(I)=SUM 

END DO 
DO I=N,1,-1 
SUM=B(I) 
IF (I.LT.N) THEN 
DO J=I+1,N 
SUM=SUM-A(I,J)*B(J) 

END DO 
END IF 
B(I)=SUM/A(I,I) 

END DO 
RETURN 
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END   !LUBKSBR 
c     ************************************************************* 
C     ************************************************************* 

SUBROUTINE MATEXP(A,EIG,AE,AEEXP,NPfNA,N,NMAX) 
c     ********************************************************** 

C * INPUT N,NMAX,A(NMAX,NMAX),EIG(NMAX)                    * 
C * RETURNS NP,NA,AE(N,N,N+1,N),AEEXP(N)                   * 
C * AE REPRESENTS THE MATRIX EXPONENTIAL OF A               * 
C * [eA(A*t)](i,j)=sum on k and 1 of                     * 
C * AE(i,j,k,l)*tA(k-l)*e"(AEEXP(l)*t)                   * 
c ********************************************************** 

INTEGER NMAX,NMAXX 
PARAMETER( NMAXX=20) 
INTEGER N,NP,NA,INDX(NMAXX),NEIG(NMAXX) 
REAL*8 A(NMAX,NMAX),ATEMP(NMAXX,NMAXX) 
REAL*8 WR(NMAXX),WI(NMAXX) 
COMPLEX*8 EIG(NMAX) 
COMPLEX*8 AE(NMAX,NMAX,NMAX+1,NMAX),AEEXP(NMAX) 
COMPLEX*8 VDM(NMAXX,NMAXX),VDMINV(NMAXX,NMAXX) 
REAL*8 G(NMAXX,NMAXX),GTEMP(NMAXX,NMAXX) 
INTEGER I,J,K,L,M,NCOEF,KK,LL 
INTEGER INDX1(NMAXX)  IFOR MATRIX INVERSION ROUTINES 
REAL D IFOR MATRIX INVERSION ROUTINES 
LOGICAL FLAG 
COMPLEX*8 ZERO 

C 
C     THE FOLLOWING ARE DIMENSION STATEMENTS FOR A DIAGNOSTIC 

REAL*8 T,TIME(4),AEVALR(NMAXX,NMAXX),AER,AEI,EIGR,EIGI 
REAL * 8 AEVALI(NMAXX,NMAXX) 

C 
INTEGER IERR,ITEMP(NMAXX)   IFOR EIGENVALUE ROUTINE ZZ_RG 
REAL*8 TEMP2(NMAXX),Z(NMAXX,NMAXX)   IFOR EIGENVALUE ROUTINE ZZ_RG 

C 
C FIND EIGENVALUES OF A 
C DO 1=1,N 
C DO J=1,N 
C ATEMP(I,J)=A(I, J) 
C END DO 
C END DO 
C 
C     CALL ZZ_RG(NMAXX,N,ATEMP,WR,WI,0,Z,ITEMP, TEMP2, IERR) 

C     DO 1=1,N 
C        EIG(I)=CMPLX(WR(I),WI(I)) 
C     END DO 
1 FORMATC EIG(',I2, ') = ',E25.17, ', ',E25.17) 
C     DO 1=1,N 
C      WRITE(6,1) I,WR(I),WI(I) 
C     END DO 
C 
C 
C 

CALL EIGSRT(N,EIG) 
C 
2 FORMATC  FTILDA MATRIX IS NOT STABLE') 

IF(REAL(EIG(1)).GE.0.)THEN 
WRITE(6,2) 
PAUSE 

END IF 
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c 
C     FORM INDEX VECTOR TO REPRESENT MULTIPLICITIES 

INDX(1)=0 
DO 1=2,N 
IF(EIG(I) .EQ.EIG(I-D) THEN 
INDX(I)=INDX(I-1)+1 

ELSE 
INDX{I)=0 

END IF 
END DO 

C 
C     FORM VANDERMONDE MATRIX 

DO 1=1,N 
DO J=1,INDX(I) 
VDM(I, J) = (0.,0.) 

END DO 
DO J=INDX(I)+1,N 
L=J-1 
NCOEF=l 
DO K=1,INDX(I) 
NCOEF=NCOEF*L 
L=L-1 

END DO 
VDM(I,J)=NCOEF*(EIG(I)**L) 

END DO 
END DO 

C 
C     FIND NUMBER OF EXPONENTIAL TERMS AND ORDER OF 
C     POLYNOMIAL COEFICIENTS 
C 

NEIG(1)=1 
DO 1=2,N 
IF(EIG(I) .EQ.EIG(I-D) THEN 
NEIG(I)=NEIG(I-1) 
ELSE 
NEIG(I)=NEIG(I-1)+1 

END IF 
END DO 
NA=NEIG(N) 

C 
NP=0 
DO 1=1,N 
IF(INDX(I).GT.NP) THEN 
NP=INDX(I) 

END IF 
END DO 

C 
C     INVERT VANDERMONDE MATRIX 
C 

DO 1=1,N 
DO J=1,N 
VDMINVd, J) = (0.,0.) 
END DO 
VDMINVd, I) = d.,0.) 

END DO 
CALL LUDCMPC(VDM,N,NMAXX,INDX1,D) 

C 
DO J=1,N 
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CALL LUBKSBC(VDM,N,NMAXX,INDXl,VDMINV(1,J)) 
END DO 

C 
C     SET G=IDENTITY MATRIX 

DO L=1,N 
DO M=1,N 
G(L,M)=0. 

END DO 
G(L,L)=1. 

END DO 
C 
C     CALCULATE THE INTERPOLATING MATRICES 

DO K=1,NP+1 
DO L=1,NA 
DO 1=1,N 
DO J=1,N 
AE(I,J,K,L) = (0.,0.) 

END DO 
END DO 

END DO 
END DO 
DO K=1,N 
DO L=1,N 
DO 1=1,N 
DO J=1,N 
KK=INDX(L)+1 
LL=NEIG(L) 
AE (I, J, KK, LL) =AE (I, J, KK, LL) +G (I, J) *VDMINV (K, L) 

END DO 
END DO 

END DO 
C 
C      INCREASE POWER OF A SO THAT G=A*G=A^K FOR NEXT K 

DO 1=1,N 
DO J=1,N 
GTEMPd, J)=0. 
DO L=1,N 
GTEMP(I,J)=GTEMP(I, J)+A (I, L) *G (L, J) 

END DO 
END DO 

END DO 
DO 1=1,N 
DO J=1,N 
G(I, J)=GTEMP(I,J) 

END DO 
END DO 

C 

C 
END DO 

AEEXP(1)=EIG(1) 
J=l 
DO 1=2,N 
IF(NEIG(I).NE.NEIG(I-l)) THEN 
J=J+1 
AEEXP(J)=EIG(I) 

END IF 
END DO 
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C     TRIM MAX POWER OF t IF NECESSARY 
ZERO=(0.,0.) 
DO K=NP+1,2,-1 
FLAG=.TRUE. 
DO L=1,NA 
DO 1=1,N 
DO J=1,N 
IF (AE(I,J,K,L).NE.ZERO) THEN 
FLAG=.FALSE. 

END IF 
END DO 

END DO 
END DO 
IF(FLAG) THEN 
NP=NP-1 

END IF 
END DO 

C 
Q ***************DIAGNOSTIC EVALUATION***************** 
3 FORMAT(' AEXP(',I2,',',12,')=',E25.17,',>,E25.17) 
4 FORMAT(' e**(A*',E 25.17,') IS') 
5 FORMAT(' ') 

TIME(1)=0. 
TIME(2)=0.01 
TIME(3)=0.02 
TIME(4)=0.03 
DO M=l,4 
T=TIME(M) 
WRITE(6,5) 
WRITE(6,4) T 
DO 1=1,N 
DO J=1,N 
AEVALR(I,J)=0. 
AEVALKI, J)=0. 
DO K=1,NP+1 
DO L=1,NA 
AER=REAL(AE(I,J,K,L)) 
AEI=IMAG(AE(I,J,K,L)) 
EIGR=REAL(EIG(L)) 
EIGI=IMAG(EIG(L)) 
IF(K.NE.l) THEN 
AEVALR(I,J)=AEVALR(I,J)+(T**(K-1))*EXP(EIGR*T) 

* *(AER*COS(EIGI*T)-AEI*SIN(EIGI*T)) 
AEVALI(I,J)=AEVALI(I,J)+(T**(K-l))*EXP(EIGR*T) 

* *(AEI*COS(EIGI*T)+AER*SIN(EIGI*T)) 
ELSE 
AEVALR(I,J)=AEVALR(I,J)+EXP(EIGR*T) 

* *(AER*COS(EIGI*T)-AEI*SIN(EIGI*T)) 
AEVALI(I,J)=AEVALI(I,J)+EXP(EIGR*T) 

* *(AEI*COS(EIGI*T)+AER*SIN(EIGI*T)) 
END IF 

END DO 
END DO 
WRITE(6,3)I,J,AEVALR(I,J),AEVALI(I,J) 
END DO 

END DO 
END DO 

r *************END OF DIAGNOSTIC******************** 

-141- 

McDonnell Douglas Corporation 



Report MDC 95P0058 Nonlinear Control of Missiles 

c 
c 

c 
c 

c 
c 
c 

c 

c 

RETURN 
END      iMATEXP 
************************************************************* 
************************************************************* 

SUBROUTINE LUDCMPC(A,N,NP,INDX,D) 
******************************************* 
* COMPLEX VERSION OF LU-DECOMPOSITION     * 
******************************************* 
INTEGER N,NP,NMAX 
PARAMETER(NMAX=100,TINY=1.OE-20) 
COMPLEX* 8 A(NP,NP),SUM,DUM2 
INTEGER INDX(N),I,J,IMAX 
REAL*8 D,AAMAX,W(NMAX) ,DUM,MAG 

D=l. 

DO 1=1,N 
AAMAX=0. 
DO J=1,N 
IF(MAG(A(I,J)).GT.AAMAX) AAMAX=MAG(A(I,J)) 

END DO 
IF(AAMAX.EQ.O.) PAUSE 
W(I)=1./AAMAX 

END DO 
DO J=1,N 
DO 1=1,J-l 
SUM=A(I, J) 
DO K=1,I-1 
SUM=SUM-A(I,K)*A(K,J) 

END DO 
A(I, J)=SUM 

END DO 
AAMAX=0. 
DO I=J,N 
SUM=A(I,J) 
DO K=1,J-1 
SUM=SUM-A(I,K)*A(K, J) 

END DO 
A(I,J)=SUM 
DUM=W (I) *MAG (SUM) 
IF(DUM.GE.AAMAX) THEN 
IMAX=I 
AAMAX=DUM 

END IF 
END DO 
IF(J.NE.IMAX) THEN 
DO K=1,N 
DUM2=A(IMAX,K) 
A(IMAX,K)=A(J,K) 
A(J,K)=DUM2 

END DO 
D=-D 
W(IMAX)=W(J) 
END IF 
INDX(J)=IMAX 
IF(A(J,J) .EQ. (0.,0.)) A(J,J) = (TINY,0.) 
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IF(J.NE.N) THEN 
DUM2=1./A(J, J) 
DO I=J+1,N 
A(I,J)=A(I,J)*DUM2 
END DO 

END IF 
END DO 
RETURN 
END  !LUDCMPC 

Q ************************************************************* 
Q ************************************************************* 

SUBROUTINE LUBKSBC(A,N,NP,INDX,B) 
Q ******************************************** 
C     * COMPLEX VERSION OF LU-BACKSUBSTITUTION   * 
Q ******************************************** 

INTEGER N,NP 
COMPLEX*8 A(NP,NP),B(N),SUM 
INTEGER INDX(N),II,I,LL 
11=0 
DO 1=1,N 
LL=INDX(I) 
SUM=B(LL) 
B(LL)=B(I) 
IF(II.NE.O) THEN 
DO J=II,I-1 
SUM=SUM-A(I,J)*B(J) 

END DO 
ELSE IF(SUM.NE. (0.,0.))  THEN 
11=1 

END IF 
B(I)=SUM 

END DO 
DO I=N,1,-1 
SUM=B(I) 
IF(I.LT.N) THEN 
DO J=I+1,N 
SUM=SUM-A(I, J) *B(J) 

END DO 
END IF 
B(I)=SUM/A(I,I) 

END DO 
RETURN 
END   !LUBKSBC 

Q ************************************************************* 
Q ************************************************************* 

FUNCTION MAG(A) 
Q **************************************** 
C     * RETURNS MAGNITUDE OF COMPLEX NUMBER  * 

**************************************** 
COMPLEX*8 A 
REAL*8 TINY,ZERO,AR,AI,MAG 
PARAMETER( TINY=1.0E-12, ZERO=0.) 
AR=ABS(REAL(A)) 
AI=ABS(IMAG(A)) 
IF(AR.LT.TINY) THEN AR=ZERO 
IF(AI.LT.TINY) THEN AI=ZERO 
MAG=SQRT(AR**2+AI**2) 
RETURN 
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END   !MAG 
Q ************************************************************* 
C    ************************************************************* 

SUBROUTINE EIGSRT(N,ARR) 
Q **************************************************************** 
C     * SORTS COMPLEX ARRAY ARR IN THE ORDER OF DEREASING REAL PARTS * 
C     * TERMS WITH EQUAL REAL PARTS ARE SUBSORTED BY IMAGINARY PARTS * 
£ **************************************************************** 

PARAMETER (M=7,NSTACK=50,FM=7875.,FA=211.,FC=1663.,FMI=1./FM) 
COMPLEX*8 A,ARR(N) 
INTEGER ISTACK(NSTACK) 
LOGICAL L1,L2,L3 
JSTACK=0 
L=l 
IR=N 
FX=0. 

10    IF(IR-L.LT.M)THEN 
DO J=L+1,IR 
A=ARR(J) 
DO I=J-1,1,-1 
L1=REAL(ARR(I)).GT.REAL(A) 
L2=REAL(ARR(I)).EQ.REAL(A) 
L3=IMAG(ARR(I)).GE.IMAG(A) 
IF(L1.0R.(L2.AND.L3))GO TO 12 
ARR(I+1)=ARR(I) 
END DO 
1=0 

12      ARR(I+1)=A 
END DO 
IF(JSTACK.EQ.0)RETURN 
IR=ISTACK(JSTACK) 
L=ISTACK(JSTACK-1) 
JSTACK=JSTACK-2 

ELSE 
I=L 
J=IR 
FX=MOD(FX*FA+FC,FM) 
IQ=L+(IR-L+1)*(FX*FMI) 
A=ARR(IQ) 
ARR(IQ)=ARR(L) 

20 CONTINUE 
21 IF(J.GT.0)THEN 

L1=REAL(A).GT.REAL(ARR(J)) 
L2=REAL(A).EQ.REAL(ARR(J)) 
L3=IMAG(A).GT.IMAG(ARR(J)) 
IF(LI.OR.(L2.AND.L3))THEN 
J=J-1 
GO TO 21 

END IF 
END IF 
IF(J.LE.I)THEN 
ARR(I)=A 
GO TO 30 

END IF 
ARR(I)=ARR(J) 
1=1 + 1 

22 IF(I.LE.N)THEN 
L1=REAL(A).LT.REAL(ARR(I)) 
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L2=REAL(A).EQ.REAL(ARR(I)) 
L3=IMAG<A).LT.IMAG(ARR(I)) 
IF(L1.0R.(L2.AND.L3))THEN 
1=1+1 
GO TO 22 

END IF 
END IF 
IF(J.LE.I)THEN 
ARR(J)=A 
I=J 
GO TO 30 

END IF 
ARR(J)=ARR(I) 
J=J-1 
GO TO 20 

30    JSTACK=JSTACK+2 
IF(JSTACK.GT.NSTACK)PAUSE "NSTACK must be made larger.' 
IF(IR-I.GE.I-L)THEN 
ISTACK(JSTACK)=IR 
ISTACK(JSTACK-1)=1+1 
IR=I-1 

ELSE 
ISTACK(JSTACK)=1-1 
ISTACK(JSTACK-1)=L 
L=I+1 

END IF 
END IF 
GO TO 10 
END IEIGSRT 
******************************************************** 
******************************************************** 
SUBROUTINE COPY(A,AEXP,NPA,NAA,B,BEXP,NPB,NAB,NSTATES,NPMAX,NAMAX) 
********************************************************************* 

C     * COPIES A STRING A, AEXP NPA NAA INTO A NEW STRING B BEXP NPB NAB  * 
<2 ********************************************************************* 

INTEGER NPMAX,NAMAX 
INTEGER NPA,NAA,NPB,NAB,NSTATES 
COMPLEX*8 A(NSTATES,NPMAX+1,NAMAX),AEXP(NAMAX) 
COMPLEX*8 B(NSTATES,NPMAX+1,NAMAX) , BEXP(NAMAX) 
INTEGER I,J,K,L 

NPB=NPA 
NAB=NAA 
DO L=1,NAA 
BEXP(L)=AEXP(L) 
DO K=1,NPA+1 
DO 1=1,NSTATES 
B(I,K,L)=A(I,K,L) 

END DO 
END DO 

END DO 
RETURN 
END   !COPY 
*************************************************************** 
SUBROUTINE ADD2(A,AEXP,NPA,NAA,COEFFA, CA, 

* B,BEXP,NPB,NAB,COEFFB,CB, 
* NSTATES,NPMAX,NAMAX) 
************************************************************* 
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C     * ADDS VECTOR STRINGS OF EXPONENTIALS A AND B TO PRODUCE    * 
C     * THE VECTOR STRING B:=COEFFB*CB*B+COEFFA*CA*A 

C 
C 

* 
* 
* 
* 
* 

* I + |-> B:=COEFFB*CB*B * 
* | |     +COEFFA*CA*A * 

* 
* 

* 

C    *         — 
C     *   A >|COEFFA | >l CA 
C   *            — 
C    *        real scalar  real matrix   |  
C 
C 
c * 
c     *   B >|COEFFB | >l CB |  
C   *               
C    *        real scalar  real matrix 
c    ************************************************************* 

INTEGER NPA,NAA,NPB,NAB,NPC 
INTEGER NPMAX,NAMAX,NMAX 
PARAMETER( NMAX=20) 
COMPLEX*8 A(NSTATES,NPMAX+1,NAMAX),AEXP(NAMAX) 
COMPLEX*8 B(NSTATES,NPMAX+1,NAMAX), BEXP(NAMAX) 
REAL*8 CA(NSTATES,NSTATES),COEFFA 
REAL*8 CB(NSTATES,NSTATES),COEFFB 
COMPLEX*8 D(NMAX) 
INTEGER I,J,K,L 

C 
1     FORMAT(' OVERFLOW OF NAMAX IN SUBROUTINE ADD2') 

IF(NAA+NAB.GT.NAMAX) THEN 
WRITE(6,1) 
PAUSE 

END IF 

NPC=MAX(NPA,NPB) 
DO K=1,NAB 
DO J=1,NPC+1 
IF(J.GT.NPBH-l) THEN 
DO I=1,NSTATES 
B(I,J,K) = (0.,0.) 

END DO 
ELSE 

DO I=1,NSTATES 
D(I) = (0.,0.) 
DO L=1,NSTATES 
D(I)=D(I)+COEFFB*CB(I,L)*B(L, J,K) 

END DO 
END DO 
DO I=1,NSTATES 
B(I, J,K)=D(I) 

END DO 
END IF 

END DO 
END DO 

DO K=1,NAA 
BEXP(NAB+K)=AEXP(K) 
DO J=1,NPC+1 
IF(J.LE.NPA+1)THEN 
DO I=1,NSTATES 
B(I,J,NAB+K)=(0.,0) 
DO L=1,NSTATES 
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B(I,J,NAB+K)=B(I,J,NAB+K)+COEFFA*CA(I,L)*A(L,J,K) 
END DO 

END DO 
ELSE 
DO I=1,NSTATES 
B(I,J,NAB+K)=(0.,0.) 

END DO 
END IF 

END DO 
END DO 
NPB=NPC 
NAB=NAB+NAA 

C 
C     SORT INTO DESCENDING VALUES OF REAL PARTS OF EXPONENTS 

CALL QCKSRT(NAB,NPB,BEXP,B,NSTATES,NPMAX,NAMAX) 
C 
C     COMBINE TERMS WITH CLOSE EXPONENTIAL FACTORS 

CALL SHRINK(B,BEXP,NPB,NAB,0.000001,NSTATES,NPMAX,NAMAX) 
C 

RETURN 
END  !ADD2 

C    ************************************************************ 
************************************************************ 
SUBROUTINE MULT3(D,A,AEXP,NPA,NAA,B,BEXP,NPB, NAB,C,CEXP,NPC, NAC, 

* NSTATES,NPMAX,NAMAX) 
**************************************************************** 

C * MULTIPLIES CONSTANT VECTOR D WITH STRINGS A AND B TO PRODUCE * 
C * THE STRING C. C=(TRANSP(D)*A)*B * 
C * NPA,NPB AND NPC ARE THE DEGREES OF THE POLYNOMIAL 
C * COEFFICIENTS OF A,B AND C RESPECTIVELY. * 
C * NAA,NAB AND NAC ARE THE NUMBER OF EXPONENTIAL TERMS IN       * 
C * A,B AND C RESPECTIVELY * 
C 
C *    A(t)—>| D | >  C(t) = ((TRANSP(D)*A(t))*B(t) 
C 
C 
C 
C * * 
Q **************************************************************** 

INTEGER NPA,NAA,NPB,NAB,NPC,NAC,NSTATES,NPMAX,NAMAX 
REAL*8 D(NSTATES) 
COMPLEX*8 A(NSTATES,NPMAX+1,NAMAX),AEXP(NAMAX) 
COMPLEX*8 B(NSTATES,NPMAX+1,NAMAX),BEXP(NAMAX) 
COMPLEX*8 C(NSTATES,NPMAX+1,NAMAX),CEXP(NAMAX) 
INTEGER I,J,L,M 
INTEGER II,Jl 

C 
1 FORMAT(' OVERFLOW OF NPMAX IN SUBROUTINE MULT3') 

IF(NPA*NPB.GT.NPMAX) THEN 
WRITE(6,1) 
PAUSE 

END IF 
C 
C 
2 FORMAT(' OVERFLOW OF NAMAX IN SUBROUTINE MULT3') 

IF(NAA+NAB.GT.NAMAX) THEN 
WRITE(6,2) 
PAUSE 
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c 
c 

END IF 

NPC=NPA+NPB 
NAC=0 
DO 1=1,NAA 
DO J=1,NAB 
NAC=NAC+1 
CEXP(NAC)=AEXP(I)+BEXP(J) 
DO L=1,NPA+1 
DO M=1,NPB+1 

DO I1=1,NSTATES 
C(I1,L+M-1,NAC)=(0.,0.) 

END DO 
END DO 

END DO 
DO L=1,NPA+1 
DO M=1,NPB+1 
DO 11=1,NSTATES 
DO Jl=l,NSTATES 
C(I1,L+M-1,NAC)=C(I1,L+M-1,NAC)+B(I1,M,J)*D(J1)*A(J1,L,I) 

END DO 
END DO 

END DO 
END DO 

END DO 
END DO 

C 
C     SORT INTO DESCENDING VALUES OF REAL PARTS OF EXPONENTS 

CALL QCKSRT(NAC,NPC,CEXP,C,NSTATES,NPMAX,NAMAX) 

C 
C     COMBINE TERMS WITH CLOSE EXPONENTIAL FACTORS 

CALL SHRINK(C,CEXP,NPC,NAC,0.000001,NSTATES, NPMAX, NAMAX) 

C 
C     ELIMINATE TERMS WITH SMALL COEFFICIENTS 
C     CALL TRIM_NA(C,CEXP,NPC,NAC,NSTATES,NPMAX,NAMAX,0.000001) 
C     CALL TRIM_NP(C,CEXP,NPC,NAC,NSTATES,NPMAX,NAMAX,0.000001) 

RETURN 
END  !MULT3 

c     ********************************************************* 
Q ********************************************************* 

SUBROUTINE ADD(A,AEXP,NPA,NA,B,BEXP,NPB,NB,COEFF,C,NSTATES, 
* NPMAX,NAMAX) 

c     ********************************************************** 
C     * ADDS VECTOR STRINGS OF EXPONENTIALS A AND B TO PRODUCE * 
C     * THE VECTOR STRING B:=B+COEFF*C*A * 

B(t) >| + | >  B(t) :=B(t)+COEFF*C*A(t) 
C 
C 
C * 
C * 
C * _l_ 
C *        I C I real matrix 
C * 
C * 
c *        _l_ 
C *       ICOEFFI real scalar 

C *         
C * 
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C     * A(t) 1 >  A(t) * 
C     * * 
Q ********************************************************** 

INTEGER NPA,NA,NPB,NB,NPC 
INTEGER NPMAX,NAMAX 
COMPLEX*8 A(NSTATES,NPMAX+1,NAMAX),AEXP(NAMAX) 
C0MPLEX*8 B(NSTATES,NPMAX+1,NAMAX),BEXP(NAMAX) 
REAL*8 C(NSTATES,NSTATES),COEFF 
INTEGER I,J,K,L 

C 
1     FORMAT(' OVERFLOW OF NAMAX IN SUBROUTINE ADD') 

IF(NA+NB.GT.NAMAX) THEN 
WRITE(6,1) 
PAUSE 

END IF 
C 

NPC=MAX(NPA,NPB) 
DO K=1,NB 
DO J=1,NPC+1 
IF(J.GT.NPB+1) THEN 
DO I=1,NSTATES 
B(I,J,K) = (0.,0.) 

END DO 
END IF 

END DO 
END DO 

C 
DO K=1,NA 
BEXP(NB+K)=AEXP(K) 
DO J=1,NPC+1 
IF(J.LE.NPA+1)THEN 
DO I=1,NSTATES 
B(I,J,NB+K)=(0.,0) 
DO L=1,NSTATES 
B(I,J,NB+K)=B(I,J,NB+K)+COEFF*C(I,L)*A(L,J,K) 

END DO 
END DO 

ELSE 
DO I=1,NSTATES 
B(I,J,NB+K)=(0.,0.) 

END DO 
END IF 

END DO 
END DO 
NPB=NPC 
NB=NB+NA 

C 
C '    SORT INTO DESCENDING VALUES OF REAL PARTS OF EXPONENTS 
C 

CALL QCKSRT(NB,NPB,BEXP,B,NSTÄTES,NPMAX, NAMAX) 
C 
C     COMBINE TERMS WITH CLOSE EXPONENTIAL FACTORS 

CALL SHRINK(B,BEXP,NPB,NB,0.000001,NSTATES,NPMAX,NAMAX) 

C 
C 

RETURN 
END  !ADD 
************************************************************* 
************************************************************* 
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SUBROUTINE QCKSRT(N,NP,ARR,BRR,NSTATES,NPMAX,NAMAX) 
c     **************************************************************** 
C     * SORTS A VECCTOR STRING OF EXPONENTIALS IN THE ORDER OF       * 
C     * DEREASING REAL PARTS OF EXPONENTIAL COEFFICIENTS. * 
C     * TERMS WITH EQUAL REAL PARTS ARE SUBSORTED BY IMAGINARY PARTS 
C     **************************************************************** 

PARAMETER (M=7,NSTACK=50,FM=7875.,FA=211.,FC=1663.,FMI=1./FM) 
COMPLEX*8 A,ARR(NAMAX),BRR(NSTATES,NPMAX+1,NAMAX) 
PARAMETER« NMAX=50) 
COMPLEX*8 B(NMAX,NMAX+1) 
INTEGER ISTACK(NSTACK) 
LOGICAL L1,L2,L3 
JSTACK=0 
L=l 
IR=N 
FX=0. 

10    IF(IR-L.LT.M)THEN 
DO J=L+1,IR 
A=ARR(J) 
DO K=1,NP+1 
DO Ml=l,NSTATES 
B(M1,K)=BRR(M1,K, J) 

END DO 
END DO 
DO I=J-1,1,-1 
L1=REAL(ARR(I) ) .GT.REAL(A) 
L2=REAL(ARR(I)).EQ.REAL(A) 
L3=IMAG(ARR(I)).GE.IMAG(A) 
IF(LI.OR.(L2.AND.L3))GO TO 12 
ARR(I+1)=ARR(I) 
DO K=1,NP+1 
DO Ml=l,NSTATES 
BRR(Ml,K,1+1)=BRR(Ml,K,I) 

END DO 
END DO 

END DO 
1=0 

12      ARR(I+1)=A 
DO K=1,NP+1 
DO Ml=l,NSTATES 
BRR(Ml,K,1+1)=B(Ml,K) 

END DO 
END DO 

END DO 
IF(JSTACK.EQ.0)RETURN 
IR=ISTACK(JSTACK) 
L=ISTACK(JSTACK-1) 
JSTACK=JSTACK-2 

ELSE 
I=L 
J=IR 
FX=MOD(FX*FA+FC,FM) 
IQ=L+(IR-L+1)*(FX*FMI) 
A=ARR(IQ) 
DO K=1,NP+1 
DO Ml=l,NSTATES 
B(M1,K)=BRR(M1,K, IQ) 

END DO 
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20 
21 

22 

END DO 
ARR(IQ)=ARR(L) 
DO K=1,NP+1 
DO M1=1,NSTATES 
BRR(Ml,K,IQ)=BRR(Ml,K,L) 

END DO 
END DO 
CONTINUE 
IF(J.GT.0)THEN 
L1=REAL(A).GT.REAL(ARR(J)) 
L2=REAL(A).EQ.REAL(ARR(J)) 
L3=IMAG(A).GT.IMAG(ARR(J)) 
IF(L1.0R.(L2.AND.L3))THEN 
J=J-1 
GO TO 21 

END IF 
END IF 
IF(J.LE.I)THEN 
ARR(I)=A 
DO K=1,NP+1 
DO M1=1,NSTATES 
BRR(M1,K,I)=B(M1,K) 

END DO 
END DO 
GO TO 30 

END IF 
ARR(I)=ARR(J) 
DO K=1,NP+1 
DO M1=1,NSTATES 
BRR(Ml,K,I)=BRR(Ml,K,J) 

END DO 
END DO 
1=1+1 
IF(I.LE.N)THEN 
L1=REAL(A).LT.REAL(ARR(I)) 
L2=REAL(A).EQ.REAL(ARR(I)) 
L3=IMAG(A) .LT.IMAG(ARRd)) 
IF(L1.0R.(L2.AND.L3))THEN 
1=1+1 
GO TO 22 

END IF 
END IF 
IF(J.LE.I)THEN 
ARR(J)=A 
DO K=1,NP+1 
DO M1=1,NSTATES 
BRR(M1,K,J)=B(M1,K) 

END DO 
END DO 
I=J 
GO TO 30 

END IF 
ARR(J)=ARR(I) 
DO K=1,NP+1 
DO M1=1,NSTATES 
BRR(Ml,K,J)=BRR(M1,K, I) 

END DO 
END DO 
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J=J-I 
GO TO 20 

30     JSTACK=JSTACK+2 
IF(JSTACK.GT.NSTACK)PAUSE 'NSTACK must be made larger.' 
IF(IR-I.GE.I-L)THEN 
ISTACK(JSTACK)=IR 
ISTACK(JSTACK-l)=1+1 
IR=I-1 

ELSE 
ISTACK(JSTACK)=1-1 
ISTACK(JSTACK-1)=L 
L=I+1 

END IF 
END IF 
GO TO 10 
END !QCKSRT 

0     ************************************************************ 
Q ************************************************************ 

FUNCTION DISTANCE(A,B) 
c     ************************************************************ 
C     * COMPUTES DISTANCE BETWEEN A AND B IN THE COMPLEX PLANE   * 
c     ************************************************************ 

COMPLEX*8 A,B 
REAL*8 DISTANCE 
DISTANCE=SQRT((REAL(A)-REAL(B))**2+(IMAG(A)-IMAG(B))**2) 
RETURN 
END  '.DISTANCE 
************************************************************ 
************************************************************ 
SUBROUTINE TRIM_NP(A,AEXP,NPA,NAA,NSTATES,NPMAX,NAMAX,THRESH) 
************************************************************ 

C * REDUCES THE HIGHEST POWER OF t IN THE COEFFICIENT * 
C * MATRICES IF THE NORMS OF ALL TERMS IN THESE HIGHER * 
C     * POWERS ARE LESS THAN THRESH * 
C     * NPA IS MODIFIED * 
c     ************************************************************ 

PARAMETER( E=2.71828182845904523536) 
INTEGER NPMAX,NAMAX 
INTEGER NPA,NAA,I,J,K,JMAX 
COMPLEX*8 A(NSTATES,NPMAX+1,NAMAX),AEXP(NAMAX) 
REAL*8 AR,AI,SIGMA,ATEMP 
IF(NPA.EQ.1)THEN 
RETURN 

END IF 
JMAX=NPA+1 
DO J=JMAX,2,-1 
DO K=1,NAA 
SIGMA=REAL(AEXP(K)) 
IF(SIGMA.NE.0.)THEN 
DO I=1,NSTATES 
AR=REAL(A(I,J,K)) 
AI=IMAG(A(I,J,K)) 
ATEMP=SQRT(AR*AR+AI*AI) 
ATEMP=ATEMP*(-(J-l)/(E*SIGMA))**(J-l) 
IF(ATEMP.GT.THRESH) THEN 
NPA=J-1 
RETURN 

END IF 
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END DO 
END IF 

END DO 
END DO 
RETURN 
END  !TRIM_NP 

Q ************************************************************ 
c ************************************************************ 

SUBROUTINE TRIM_NA(A,AEXP,NPA,NAA,NSTATES,NPMAX,NAMAX,THRESH) 
Q ************************************************************ 
C * ELIMINATES ANY EXPONENTIAL TERM IN A IF THE NORMS * 
C * OF ALL THE COEFFICINT ELEMENTS ARE LESS THAN THRESH. * 
C     * A,AEXP AND NA ARE MODIFIED * 
Q        ************************************************************ 

PARAMETER( E=2.71828182845904523536) 
INTEGER NPMAX,NAMAX 
INTEGER NPA,NAA,I,J,K,M 
COMPLEX*8 A(NSTATES,NPMAX+1,NAMAX),AEXP(NAMAX) 
REAL*8 AR,AI,SIGMA,ATEMP,AN 
M=0 
DO K=1,NAA 

SIGMA=REAL(AEXP(K)) 
AN=0. 
DO J=1,NPA+1 
DO 1=1,NSTATES 
AR=REAL(A(I, J,K) ) 
AI=IMAG(A(I, J,K) ) 
ATEMP=SQRT(AR*AR+AI*AI) 
IF((SIGMA.LT.O.).AND.(J.GT.l)) THEN 
ATEMP=ATEMP*(-(J-l)/(E*SIGMA))**(J-l) 

END IF 
IF(ATEMP.GT.AN) THEN 
AN=ATEMP 

END IF 
END DO 

END DO 
C 

IF(AN.LT.THRESH) THEN 
M=M+1 
ELSE 
AEXP(K-M)=AEXP(K) 
DO J=1,NPA+1 
DO 1=1,NSTATES 
A(I,J,K-M)=A(I,J,K) 

END DO 
END DO 

END IF 
END DO 
NAA=NAA-M 
RETURN 
END   !TRIM_NA 

r ************************************************************ 
Q ************************************************************ 

SUBROUTINE SHRINK(A,AEXP,NPA,NAA,EPSILON,NSTATES,NPMAX,NAMAX) 
Q ****************************************************************** 
C     * COMBINES TERMS IN A VECTOR STRING IF THE EXPONENT COEFFICIENTS * 
C     * ARE WITHIN EPSILON OF EACH OTHER. * 
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c ****************************************************************** 
INTEGER I,J,K,L,NAA,NPA,NSTATES,NPMAX,NAMAX 
C0MPLEX*8 A(NSTATES,NPMAX+1,NAMAX),AEXP(NAMAX) 
REAL*8 EPSILON 
J=l 
DO I=1,NAA-1 
IF(DISTANCE(AEXP(I),AEXP(I+1) ) .GE.EPSILON) THEN 
J=J+1 
AEXP(J)=AEXP(I+1) 
DO K=1,NPA+1 
DO L=l,NSTATES 
A(L,K,J)=A(L,K,I+1) 
END DO 

END DO 
ELSE 
DO K=1,NPA+1 
DO L=l,NSTATES 
A(L,K,J)=A(L,K,J)+A(L,K,I+1) 
END DO 

END DO 
END IF 

END DO 
NAA=J 
RETURN 
END  !SHRINK 

c     ************************************************************ 
Q     ************************************************************ 

SUBROUTINE MULT(A,AEXP,NPA,NAA,B,BEXP,NPB,NAB,TEMP,TEMPEXP, 
* NSTATES,NPMAX,NAMAX, LT,LN) 

c     ************************************************************ 
C * MULTIPLIES STRINGS A AND B AND PLACES IT IN B 
C * NPA AND NPB ARE THE DEGREES OF THE POLYNOMIAL 
C * COEFFICIENTS OF A AND B RESPECTIVELY. 
C * NAA AND NAB ARE THE NUMBER OF EXPONENTIAL TERMS IN 
C * A AND B RESPECTIVELY 
C * IF LT=1 THEN A-TRANSPOSED IS THE COEFFICIENT 
C * IF LT=0 THEN A IS THE COEFFICIENT 
C * IF LN=1 THEN A(-t) IS USED INSTEAD OF A(t) 
C * IF LN=0 THEN A(t) IS USED 
C * 
C *   
C * II 
C *      B(t) >l A(t) I > B(t) :=A(t)*B(t) 
C *  vector string    I 1 vector string 
C * matrix string 
C 
c     ************************************************************ 

INTEGER NSTATES,NPA,NAA,NPB,NAB,NPC,NAC,NPMAX,NAMAX 
COMPLEX*8 A(NSTATES,NSTATES,NSTATES + 1, NSTATES) , AEXP(NSTATES) 
COMPLEX*8 B(NSTATES,NPMAX+1,NAMAX),BEXP(NAMAX) 
COMPLEX*8 TEMP(NSTATES,NPMAX+1,NAMAX),TEMPEXP(NAMAX) 
INTEGER I,J,K,L,M 
INTEGER II,Jl 
INTEGER LT,LN 

C 
C 
1     FORMAT(' OVERFLOW OF NAMAX IN SUBROUTINE MULT') 

IF(NAA*NAB.GT.NAMAX) THEN 
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WRITE(6,1) 
PAUSE 

END IF 
C 
C 
2     FORMAT(' OVERFLOW OF NPMAX IN SUBROUTINE MULT1) 

IF(NPA+NPB.GT.NPMAX) THEN 
WRITE(6,2) 
PAUSE 

END IF 
C 

DO K=1,NAB 
TEMPEXP(K)=BEXP(K) 
DO J=1,NPB+1 
DO I=1,NSTATES 
TEMP(I,J,K)=B(I,J,K) 

END DO 
END DO 

END DO 
C 

NPC=NPA+NPB 
NAC=0 
DO 1=1,NAA 
DO J=1,NAB 
NAC=NAC+1 
BEXP (NAC) = (1-2*LN) *AEXP (I) +TEMPEXP (J) 
DO L=1,NPA+1 
DO M=1,NPB+1 

DO I1=1,NSTATES 
B(II,L+M-l,NAC)=(0.,0.) 

END DO 
END DO 

END DO 
DO L=1,NPA+1 
DO M=1,NPB+1 
DO I1=1,NSTATES 
DO J1=1,NSTATES 
IF(LT.EQ.O) THEN 
B(II,L+M-l,NAC)=B(II,L+M-l,NAC) 

* +((1-2*LN)**(L+1))*A(I1,J1,L,I)*TEMP(J1,M,J) 
ELSE 
B(I1,L+M-1,NAC)=B(I1,L+M-1,NAC) 

* +((1-2*LN)**(L+1))*A(J1,I1,L,I)*TEMP(J1,M,J) 
END IF 

END DO 
END DO 

END DO 
END DO 

END DO 
END DO 
NPB=NPC 
NAB=NAC 

C 
C 
C     SORT INTO DESCENDING VALUES OF REAL PARTS OF EXPONENTS 
C 

CALL QCKSRT(NAB,NPB,BEXP,B,NSTÄTES,NPMAX, NAMAX) 
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C     COMBINE TERMS WITH CLOSE EXPONENTIAL FACTORS 
CALL SHRINK(B,BEXP,NPB,NAB,0.000001,NSTATES,NPMAX,NAMAX) 

C 
C     REMOVE SMALL TERMS 

CALL TRIM_NA(B,BEXP,NPB,NAB,NSTATES,NPMAX,NAMAX,0.00001) 

C 

C 

C 
c 

CALL TRIM NP(B,BEXP,NPB,NAB,NSTATES,NPMAX,NAMAX,0.00001) 

RETURN 
END  !MULT 
*************************************************************** 
*************************************************************** 
SUBROUTINE INT_T_INF(A,AEXP,NPA,NAA, NSTATES,NPMAX,NAMAX) 
*************************************************************** 

C     * INTEGRATES A VECTOR STRING OF EXPONENTIALS FROM t 
C     * TO INFINITY. 
C     * NSTATES=NUMBER OF STATE COMPONENTS. 
C     * NPA=HIGHEST POWER OF t IN A. 
C     * NAA=NUMBER OF EXPONENTIAL TERMS IN A. 
C     * STABILITY OF FTILDA MATRIX SHOULD INSURE THAT THE 
C     * INTEGRALS EXIST. 
C     * 
C     * 
C     *   
C     *      A(t)->l INTEGRAL FROM t TO INFINITY OF A(s) ds |->A(t) 
C   *   
C     * 
C     * 
C     * 
c     *************************************************************** 

INTEGER NPA,NAA,NSTATES,NPMAX,NAMAX 
COMPLEX*8 A(NSTATES,NPMAX+1,NAMAX),AEXP(NAMAX) 
INTEGER I,J,K 

1     FORMAT('  INTEGRAL DOES NOT EXIST') 
DO K=1,NAA 
ZERO=0. 
IF(REAL(AEXP(K)).GE.ZERO) THEN 
WRITE(6,1) 
PAUSE 

END IF 
END DO 
DO K=1,NAA 
DO 1=1,NSTATES 
A(I,NPA+1,K)=-A(I,NPA+1,K)/AEXP(K) 

END DO 
DO J=NPA, 1,-1 
DO 1=1,NSTATES 
A(I,J,K)=-(A(I,J,K)+J*A(I,J+1,K))/AEXP(K) 

END DO 
END DO 

END DO 
CALL TRIM_NP(A,AEXP,NPA,NAA,NSTATES,NPMAX,NAMAX,0.00001) 

RETURN 
END  !INT T INF 
*********"*"*¥******************************************************** 
******************************************************************** 
SUBROUTINE INT 0 T(X,A,AEXP,NPA,NAA,NSTATES,NPMAX,NAMAX) 
******************************************************************** 
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C * INTEGRATES A VECTOR STRING FROM 0 TO t AND ADDS THE * 
C * CONSTANT VECTOR X. * 
C * NSTATES=NUMBER OF STATE COMPONENTS. * 
C * NPA=HIGHEST POWER OF t IN A. * 
C * NAA=NUMBER OF EXPONENTIAL TERMS IN A. * 
C * * 
C ******************************************************************** 

INTEGER NPA,NAA,NSTATES,NPMAX,NAMAX,NSTATEMAX 
PARAMETER ( NSTATEMAX=6) 
REAL*8 X(NSTATES) 
COMPLEX*8 A(NSTATES,NPMAX+1,NAMAX),AEXP(NAMAX) 
COMPLEX*8 C(NSTATEMAX) 
COMPLEX*8 ZERO 
INTEGER I,J,K 

C 
1 FORMAT(' MUST INCREASE NSTATEMAX IN INT_0_T ROUTINE') 

IF(NSTATES.GT.NSTATEMAX) THEN 
WRITE(6,1) 
PAUSE 

END IF 
C 
C 
2 FORMAT(' OVERFLOW OF NPMAX IN SUBROUTINE INT_0_T') 
C 

ZERO=(0.,0.) 
C 
C     INITIALIZE INTEGRAL AT STATE DEVIATION FROM TRIM 

DO 1=1,NSTATES 
C(I)=X(I) 

END DO 
C 

DO K=1,NAA 
IF(AEXP(K).NE.ZERO) THEN 
DO 1=1,NSTATES 
A(I,NPA+1,K)=A(I,NPA+1,K) /AEXP (K) 

END DO 
DO J=NPA,1,-1 
DO 1=1,NSTATES 
A(I,J,K)=(A(I,J,K)-J*A(I,J+1,K))/AEXP(K) 

END DO 
END DO 

ELSE 
IF(NPA+l.GT.NPMAX) THEN 
WRITE(6,2) 
PAUSE 

END IF 
NPA=NPA+1 
DO 1=1,NSTATES 
DO J=NPA+1,2,-1 
A(I,J,K)=A(I, J-1,K)/(J-1) 
END DO 
A(I,l,K)=ZERO 

END DO 
END IF 
DO 1=1,NSTATES 
C(I)=C(I)-A(I,1,K) 

END DO 
END DO 
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c 
C     APPEND eA0*t TERM TO SATISFY t=0 CONDITION ON INTEGRAL 

NAA=NAA+1 
AEXP(NAA)=ZERO 
DO I=1,NSTATES 
A(I,1,NAA)=C(I) 
DO J=2,NPA+1 
A(I,J,NAA)=ZERO 

END DO 
END DO 
CALL TRIM_NP(A,AEXP,NPA,NAA,NSTATES,NPMAX,NAMAX,0.00001) 

C 
RETURN 
END  ! INT_0_T 

Q ************************************************* 
SUBROUTINE ZEROEVAL(S,NPS,NAS,ZE,NSTATES,NPMAX,NAMAX) 
**************************************************** C 

C 

* C     * EVALUATES A VECTOR STRING OF EXPONENTIALS AT t=0 
**************************************************** 
INTEGER NSTATES,NPS,NAS,MPMAX,NAMAX,I,J 
COMPLEX*8 S(NSTATES,NPMAX+1,NAMAX) 
REAL*8 ZE(NSTATES) 
DO 1=1,NSTATES 
ZE(I)=0. 
DO J=1,NAS 
ZE(I)=ZE(I)+REAL(S(I,1,J) ) 

END DO 
END DO 
RETURN 
END !ZEROEVAL 

c     ****************************************************** 
SUBROUTINE TESTP(A,Q,R,P,N) 

c     ****************************************************** 
C * TESTS SOLUTION FOR RICCATI EQUATION OBTAINED FROM * 
C * P=Z2*Z1INVERSE BY INSERTING THE SOLUTION BACK INTO * 
C     * THE EQUATION A1*P+P*A+Q+P*R*P=0 AND WRITING OUT    * 
C     * ERROR * 
Q     ****************************************************** 

REAL*8 A(N,N),Q(N,N),R(N,N),P(N,N) , E(100,100) 
INTEGER I,J,K,L 

1     FORMATC RICCATI ERRORC,12, \ \I2, *) = '/E25.17) 

DO 1=1,N 
DO J=1,N 
E(I,J)=Q(I,J) 
DO K=1,N 
E(I,J)=E(I,J)+A(K, I)*P(K,J)+A(K,J)*P(K, I) 
DO L=1,N 
E(I,J)=E(I,J)+P(K,I)*R(K,L)*P(L,J) 

END DO 
END DO 
WRITE(6,1) I,J,E(I,J) 

END DO 
END DO 
RETURN 
END  ! TESTP 

r ************************************************* 
SUBROUTINE TESTF(A,R,P,F,N) 
************************************************* 
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C * TESTS THE SOLUTION FOR FTILDA OBTAINED FROM * 
C * Z1*EIG*Z1INVERSE BY CALCULATION OF THE * 
C * EQUIVALENT FORM ATILDA+RTILDA*P * 
C * AND WRITES OUT THE ERROR * 
Q ************************************************* 

REAL*8 A(N,N),R(N,N),P(N,N),F(N,N),E(100,100) 
INTEGER I,J,K 

1     FORMATC FTILDA ERR0R(',I2,',',12,')=',E25.17) 
DO 1=1,N 
DO J=1,N 
E(I,J)=A(I,J)-F(I,J) 
DO K=1,N 
E(I,J)=E(I,J)+R(I,K)*P(K,J) 

END DO 
WRITE(6,1) I,J,E(I,J) 

END DO 
END DO 
RETURN 
END  ! TESTF 

Q *************************************************** 
SUBROUTINE MMULT(C,A,AEXP,NP,NA,NPMAX,NAMAX,N) 

C     MULTIPLIES STRING A TIME CONCTANT REAL MATRIX C 
INTEGER I,K,L,M,N,NPMAX,MAMAX 
REAL*8 C(N,N) 
COMPLEX*8  A(N,NPMAX+1,NAMAX),AEXP(NAMAX),TEMP(100) 
DO L=1,NA 
DO K=1,NP+1 
DO 1=1,N 
TEMP(I)=0. 
DO M=1,N 
TEMP(I)=TEMP(I)+C(I,M)*A(M,K,L) 

END DO 
END DO 
DO 1=1,N 
A(I,K, L)=TEMP(I) 

END DO 
END DO 

END DO 
RETURN 
END !MMULT 

c***************************************************************** 
Q***************************************************************** 

SUBROUTINE WRITEXP(A,AEXP,NP,NA,N) 
r ********************************************* 
C     * WRITES OUT STRINGS OF MATRIX EXPONENTIALS * 
Q ********************************************* 

INTEGER NA,NP,N 
INTEGER I,J,K,L 
COMPLEX*8 A(N,N,N+1,N),AEXP(N) 

1 FORMATC EXPONENT IS ', E25 .17, ', ', E25 .17) 
2 FORMATC POWER OF t IS ',12) 
3 FORMATC MATRIX IS ') 
4 FORMAT(E25.17,',',E25.17) 
5 FORMAT(' ') 
6 FORMATC NA=',I2) 
7 FORMATC NP=',I2) 
8 FORMATC N=',I2) 
C 
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C     OUTPUT MATRIX EXPONENTIAL 
WRITE(6,6) NA 
WRITE(6,7) NP 
WRITE(6,8) N 
DO L=1,NA 
WRITE(6,1) REAL(AEXP(L)),IMAG(AEXP(L)) 
DO K=1,NP+1 
WRITE(6,2) K-l 
WRITE(6,3) 
DO 1=1,N 
WRITE(6,4)  (REAL(A(I,J,K,L)),IMAG(A(I,J,K,L)),J=1,N) 
WRITE(6,5) 
END DO 

END DO 
END DO 

RETURN 
END 1WRITEXP 

c     ************************************************************** 
c     ************************************************************** 

SUBROUTINE WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES, 
* NPMAX,NAMAX) 
INTEGER NPZ,NAZ,NPQ,NAQ,NSTATES,NPMAX,NAMAX,I,K,L 
COMPLEX*8 Z(NSTATES,NPMAX+1,NAMAX),ZEXP(NAMAX) 
COMPLEX*8 Q(NSTATES,NPMAX+1,NAMAX),QEXP(NAMAX) 

C 
1 FORMAT('     ') 
2 FORMAT('    NAZ=',I6,'       NPZ=',I3) 
3 FORMAT ('    NAQ=*,I6,'       NPQ=',I3) 
4 FORMAT(' Zl',12, ', ',12, ',',16, ')=',E25.17, ' , ',E25.17) 
5 FORMATC QC,I2,',M2,',',I6,')=',E25.17,' , ',E25.17) 
6 FORMATC EXPONENT=',E25.17, ', ',E25.17) 

WRITE(6,1) 
WRITE(6,2) NAZ,NPZ 
WRITE(6,3) NAQ,NPQ 
WRITE(6,1) 
DO L=1,NAZ 
WRITE(6,1) 
WRITE(6,6) REAL(ZEXP(L)),IMAG(ZEXP(L)) 
DO K=1,NPZ+1 
DO I=1,NSTATES 
WRITE (6, 4) I,K,L,REAL(Z(I,K,L)),IMAG(Z(I,K,D) 

END DO 
END DO 

END DO 
WRITE(6,1) 
DO L=1,NAQ 
WRITE(6,1) 
WRITE(6,6) REAL(QEXP(L)),IMAG(QEXP(L)) 
DO K=1,NPQ+1 
DO I=1,NSTATES 
WRITE(6,5) I,K,L,REAL(Q(I,K,L)),IMAG(Q(I, K, L)) 

END DO 
END DO 

END DO 
RETURN 
END  !WRITE ZQ 

c     ***********7************************************************* 
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Q ************************************************************* 

Q ******************************************************** 
Q********************************************************************** 
C ZZ_RG    - The eispack eigenvalue/eigenvector routines. 
C ZZ_ELMHES 
C ZZ_HQR 
C ZZ_ELTRAN 
C ZZ_HQR2 
C ZZ_BALBAK 
C 
Q ************************************************** 

C 
c 
C THIS ROUTINE CONTAINS GENERALIZED EIGENVECTOR MODIFICATIONS MADE 
C B. MEARS  11/14/82 

C 

C 
SUBROUTINE ZZ RG(NM,N,A,WR,WI,MATZ,Z,IV1,FV1,IERR) 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
INTEGER N,NM,IS1,IS2,IERR,MATZ 
DIMENSION A(NM,N),WR(N),WI(N),Z(NM,N),FV1(N) 
INTEGER IV1(N) 

C 
C THIS SUBROUTINE CALLS THE RECOMMENDED SEQUENCE OF 
C SUBROUTINES FROM THE EIGENSYSTEM SUBROUTINE PACKAGE (EISPACK) 
C TO FIND THE EIGENVALUES AND EIGENVECTORS (IF DESIRED) 
C OF A REAL GENERAL MATRIX. 
C 
C ON INPUT- 
C 
C NM  MUST BE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL 
C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM 
C DIMENSION STATEMENT, 
C 
C N  IS THE ORDER OF THE MATRIX  A, 
C 
C A  CONTAINS THE REAL GENERAL MATRIX, 
C 
C MATZ  IS AN INTEGER VARIABLE SET EQUAL TO ZERO IF 
C ONLY EIGENVALUES ARE DESIRED,  OTHERWISE IT IS SET TO 
C ANY NON-ZERO INTEGER FOR BOTH EIGENVALUES AND EIGENVECTORS. 
C 
C ON OUTPUT- 
C 
C WR  AND  WI  CONTAIN THE REAL AND IMAGINARY PARTS, 
C RESPECTIVELY, OF THE EIGENVALUES.  COMPLEX CONJUGATE 
C PAIRS OF EIGENVALUES APPEAR CONSECUTIVELY WITH THE 
C EIGENVALUE HAVING THE POSITIVE IMAGINARY PART FIRST, 
C 
C Z  CONTAINS THE REAL AND IMAGINARY PARTS OF THE EIGENVECTORS 
C IF MATZ IS NOT ZERO.  IF THE J-TH EIGENVALUE IS REAL, THE 
C J-TH COLUMN OF  Z  CONTAINS ITS EIGENVECTOR.  IF THE J-TH 
C EIGENVALUE IS COMPLEX WITH POSITIVE IMAGINARY PART, THE 
C J-TH AND (J+D-TH COLUMNS OF  Z  CONTAIN THE REAL AND 
C IMAGINARY PARTS OF ITS EIGENVECTOR.  THE CONJUGATE OF THIS 
C VECTOR IS THE EIGENVECTOR FOR THE CONJUGATE EIGENVALUE, 
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c 
C        IERR  IS AN INTEGER OUTPUT VARIABLE SET EQUAL TO AN 
C        ERROR COMPLETION CODE DESCRIBED IN SECTION 2B OF THE 
C        DOCUMENTATION.  THE NORMAL COMPLETION CODE IS ZERO, 
C 
C        IV1  AND  FV1  ARE TEMPORARY STORAGE ARRAYS. 
C 
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW, 
C     APPLIED MATHEMATICS DIVISION, AZZ_RGONNE NATIONAL LABORATORY 
C 

IF (N .LE. NM) GO TO 10 
IERR = 10 * N 
GO TO 50 

C 
10 CALL  ZZ_BALANC(NM,N,A,IS1,IS2,FV1) 

CALL  ZZ_ELMHES(NM,N,IS1,IS2,A,IV1) 
IF (MATZ .NE. 0) GO TO 20 

c     ********** FIND EIGENVALUES ONLY ********** 
CALL  ZZ_HQR(NM,N,IS1,IS2,A,WR,WI,IERR) 
GO TO 50 

c     ********** FIND BOTH EIGENVALUES AND EIGENVECTORS ********** 
20 CALL  ZZ_ELTRAN(NM,N,IS1,IS2,A,IV1,Z) 

CALL  ZZ_HQR2(NM,N,IS1,IS2,A,WR,WI,Z,IERR) 
IF (IERR .NE. 0) GO TO 50 
CALL  ZZ_BALBAK(NM,N,IS1,IS2,FV1,N,Z) 

50 RETURN 
c     ********** LAST CARD OF ZZ_RG ********** 

END 
*DECK ZZ_BALANC 
C 
c       

C 
SUBROUTINE ZZ_BALANC(NM,N,A,LOW,IGH,SCALE) 

C 
IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
INTEGER I,J,K,L,M,N,JJ,NM,IGH,LOW,IEXC 
DIMENSION A(NM,N),SCALE(N) 
LOGICAL NOCONV 

C 
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ZZ_BALANCE, 
C NUM. MATH. 13, 293-304(1969) BY PARLETT AND REINSCH. 
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 315-326(1971). 

C 
C     THIS SUBROUTINE ZZ_BALANCES A REAL MATRIX AND ISOLATES 
C     EIGENVALUES WHENEVER POSSIBLE. 
C 
C     ON INPUT- 
C 
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL 
C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM 
C DIMENSION STATEMENT, 
C 
C        N IS THE ORDER OF THE MATRIX, 
C 
C        A CONTAINS THE INPUT MATRIX TO BE ZZ_BALANCED. 

C 
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C ON OUTPUT- 
C 
C        A CONTAINS THE ZZ_BALANCED MATRIX, 
C 
C        LOW AND IGH ARE TWO INTEGERS SUCH THAT A(I,J) 
C IS EQUAL TO ZERO IF 
C (1) I IS GREATER THAN J AND 
C (2) J=l,...,LOW-l OR I=IGH+1,...,N, 
C 
C        SCALE CONTAINS INFORMATION DETERMINING THE 
C PERMUTATIONS AND SCALING FACTORS USED. 
C 
C SUPPOSE THAT THE PRINCIPAL SUBMATRIX IN ROWS LOW THROUGH IGH 
C HAS BEEN ZZ_BALANCED, THAT P(J) DENOTES THE INDEX INTERCHANGED 
C WITH J DURING THE PERMUTATION STEP, AND THAT THE ELEMENTS 
C OF THE DIAGONAL MATRIX USED ARE DENOTED BY D(I,J).  THEN 
C        SCALE(J) = P(J),    FOR J = l,...,LOW-l 
C =D(J,J),      J = LOW,...,IGH 
C = P(J) J = IGH+1,...,N. 
C THE ORDER IN WHICH THE INTERCHANGES ARE MADE IS N TO IGH+1, 
C THEN 1 TO LOW-1. 
C 
C NOTE THAT 1 IS RETURNED FOR IGH IF IGH IS ZERO FORMALLY. 
C 
C THE ALGOL PROCEDURE EXC CONTAINED IN ZZ_BALANCE APPEARS IN 
C ZZ_BALANC  IN LINE.   (NOTE THAT THE ALGOL ROLES OF IDENTIFIERS 
C K,L HAVE BEEN REVERSED.) 
C 
C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW, 
C APPLIED MATHEMATICS DIVISION, AZZ_RGONNE NATIONAL LABORATORY 
C 
c   

c 
c ********** RADIX IS A MACHINE DEPENDENT PARAMETER SPECIFYING 
C THE BASE OF THE MACHINE FLOATING POINT REPRESENTATION. 
C 
C ********** 

RADIX = 2. 

B2 = RADIX * RADIX 
K = 1 
L = N 
GO TO 100 

c     ********** IN-LINE PROCEDURE FOR ROW AND 
C COLUMN EXCHANGE ********** 

20 SCALE(M) = J 
IF (J .EQ. M) GO TO 50 

C 
DO 30 I = 1, L 

F = A(I,J) 
A(I,J) = A(I,M) 
A(I,M) = F 

30 CONTINUE 
C 

DO 40 I = K, N 
F = A(J,I) 
A(J,I) = A(M,I) 
A(M,I) = F 
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4 0 CONTINUE 
C 

50 GO TO (80,130), IEXC 
c     ********** SEARCH FOR ROWS ISOLATING AN EIGENVALUE 
C AND PUSH THEM DOWN ********** 

80 IF (L .EQ. 1) GO TO 280 
L = L - 1 

Q     ********** FOR J=L STEP -1 UNTIL 1 DO — ********** 
100 DO 120 JJ = 1, L 

J = L + 1 - JJ 
C 

DO 110 I = 1, L 
IF (I .EQ. J) GO TO 110 
IF (A(J,I) .NE. 0.0) GO TO 120 

110    CONTINUE 
C 

M = L 
IEXC = 1 
GO TO 20 

120 CONTINUE 
C 

GO TO 140 
c     ********** SEARCH FOR COLUMNS ISOLATING AN EIGENVALUE 
C AND PUSH THEM LEFT ********** 

130 K = K + 1 
C 

140 DO 170 J = K, L 
C 

DO 150 I = K, L 
IF (I .EQ. J) GO TO 150 
IF (A(I,J) .NE. 0.0) GO TO 170 

150    CONTINUE 
C 

M = K 
IEXC = 2 
GO TO 20 

17 0 CONTINUE 
c     ********** NOW ZZ_BALANCE THE SUBMATRIX IN ROWS K TO L ********** 

DO 180 I = K, L  ~~ 
180 SCALE(I) =1.0 

c     ********** ITERATIVE LOOP FOR NORM REDUCTION ********** 
190 NOCONV = .FALSE. 

C 
DO 270 I = K, L 

C = 0.0 
R = 0.0 

C 
DO 200 J = K, L 

IF (J .EQ. I) GO TO 200 
C = C + ABS(A(J,I)) 
R = R + ABS(A(I,J)) 

200    CONTINUE 
c     ********** GUARD AGAINST ZERO C OR R DUE TO UNDERFLOW ********** 

IF (C .EQ. 0.0 .OR. R .EQ. 0.0) GO TO 270 
G = R / RADIX 
F = 1.0 
S = C + R 

210    IF (C .GE. G) GO TO 220 

-164- 

McDonnell Douglas Corporation 



Report MDC 95P0058 Nonlinear Control of Missiles 

F = F * RADIX 
C = C * B2 
GO TO 210 

220    G = R * RADIX 
230    IF (C .LT. G) GO TO 240 

F = F / RADIX 
C = C / B2 
GO TO 230 

C     ********** NOW ZZ_BALANCE ********** 
240    IF ((C + R) / F .GE. 0.95 * S) GO TO 270 

G = 1.0 / F 
SCALE(I) = SCALE(I) * F 
NOCONV = .TRUE. 

C 
DO 250 J = K, N 

250    A(I,J) = A{I,J) * G 
C 

DO 260 J = 1, L 
260    A(J,I) = A(J,I) * F 

C 
27 0 CONTINUE 

C 
IF (NOCONV) GO TO 190 

C 
280 LOW = K 

IGH = L 
RETURN 

c     ********** LAST CARD OF ZZ_BALANC ********** 
END 

*DECK ZZ_ELMHES 
C 
c       

c 
SUBROUTINE ZZ_ELMHES(NM,N,LOW,IGH,A,INT) 

C 
IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
DIMENSION A(NM,N),INT(IGH) 

C 
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ZZ_ELMHES, 
C NUM. MATH. 12, 349-368(1968) BY MARTIN AND WILKINSON. 
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971). 
C 
C GIVEN A REAL GENERAL MATRIX, THIS SUBROUTINE 
C REDUCES A SUBMATRIX SITUATED IN ROWS AND COLUMNS 
C LOW THROUGH IGH TO UPPER HESSENBEZZ_RG FORM BY 
C STABILIZED ELEMENTARY SIMILARITY TRANSFORMATIONS. 
C 
C . ON INPUT- 
C 
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL 
C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM 
C DIMENSION STATEMENT, 
C 
C        N IS THE ORDER OF THE MATRIX, 
C 
C        LOW AND IGH ARE INTEGERS DETERMINED BY THE ZZ_BALANCING 
C SUBROUTINE  ZZ_BALANC.  IF  ZZ_BALANC  HAS NOT BEEN USED, 
C SET LOW=l, IGH=N, 
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c 
C A CONTAINS THE INPUT MATRIX. 
C 
C     ON OUTPUT- 
C 
C A CONTAINS THE HESSENBEZZ_RG MATRIX.  THE MULTIPLIERS 
C WHICH WERE USED IN THE REDUCTION ARE STORED IN THE 
C REMAINING TRIANGLE UNDER THE HESSENBEZZ_RG MATRIX, 
C 
C INT CONTAINS INFORMATION ON THE ROWS AND COLUMNS 
C INTERCHANGED IN THE REDUCTION. 
C ONLY ELEMENTS LOW THROUGH IGH ARE USED. 
C 
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW, 
C     APPLIED MATHEMATICS DIVISION, AZZ_RGONNE NATIONAL LABORATORY 

C 
c       

C 
LA = IGH - 1 
KP1 = LOW + 1 
IF (LA .LT. KP1) GO TO 200 

C 
DO 180 M = KP1, LA 

MM1 = M - 1 
X = 0.0 
I = M 

C 
DO 100 J = M, IGH 

IF (ABS(A(J,MM1)) .LE. ABS(X)) GO TO 100 
X = A(J,MM1) 
I = J 

100    CONTINUE 
C 

INT(M) = I 
IF (I .EQ. M) GO TO 130 

Q ********** INTERCHANGE ROWS AND COLUMNS OF A ********** 
DO 110 J = MM1, N 

Y = A(I,J) 
A(I,J) = A(M,J) 
A(M,J) = Y 

110    CONTINUE 
C 

DO 120 J = 1, IGH 
Y = A(J,I) 
A(J,I) = A(J,M) 
A(J,M) = Y 

120    CONTINUE 
c    ********** END INTERCHANGE ********** 

130    IF (X .EQ. 0.0) GO TO 180 
MP1 = M + 1 

C 
DO 160 I = MP1, IGH 

Y = A(I,MM1) 
IF (Y .EQ. 0.0) GO TO 160 
Y = Y / X 
A(I,MM1) = Y 

C 
DO 140 J = M, N 

-166- 

McDonnell Douglas Corporation 



Report MDC 95P0058 Nonlinear Control of Missiles 

140       A(I,J) = A(I,J) - Y * A(M,J) 
C 

DO 150 J = 1, IGH 
150       A(J,M) = A(J,M) + Y * A(J,I) 

C 
160    CONTINUE 

C 
180 CONTINUE 

C 
200 RETURN 

c    ********** LAST CARD OF ZZ_ELMHES ********** 
END 

*DECK ZZ_HQR 
C 

C 

C 
SUBROUTINE ZZ HQR(NM,N,LOW,IGH,H,WR,WI,IERR) 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
INTEGER EN,ENM2 
DIMENSION H(NM,N),WR(N),WI(N) 
DOUBLE PRECISION NORM,MACHEP 
LOGICAL NOTLAS 

C 
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ZZ_HQR, 
C NUM. MATH. 14, 219-231(1970) BY MARTIN, PETERS, AND WILKINSON. 
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 359-371(1971). 
C 
C THIS SUBROUTINE FINDS THE EIGENVALUES OF A REAL 
C UPPER HESSENBEZZ_RG MATRIX BY THE OR METHOD. 
C 
C ON INPUT- 
C 
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL 
C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM 
C DIMENSION STATEMENT, 
C 
C        N IS THE ORDER OF THE MATRIX, 
C 
C        LOW AND IGH ARE INTEGERS DETERMINED BY THE ZZ_BALANCING 
C SUBROUTINE  ZZ_BALANC.  IF  ZZ_BALANC  HAS NOT BEEN USED, 
C SET LOW=l, IGH=N, 
C 
C        H CONTAINS THE UPPER HESSENBEZZ_RG MATRIX.  INFORMATION ABOUT 
C THE TRANSFORMATIONS USED IN THE REDUCTION TO HESSENBEZZ_RG 
C FORM BY  ZZ_ELMHES  OR  ORTHES, IF PERFORMED, IS STORED 
C IN THE REMAINING TRIANGLE UNDER THE HESSENBEZZ_RG MATRIX. 
C 
C ON OUTPUT- 
C 
C        H HAS BEEN DESTROYED.  THEREFORE, IT MUST BE SAVED 
C BEFORE CALLING  ZZ_HQR  IF SUBSEQUENT CALCULATION AND 
C BACK TRANSFORMATION OF EIGENVECTORS IS TO BE PERFORMED, 
C 
C        WR AND WI CONTAIN THE REAL AND IMAGINARY PARTS, 
C RESPECTIVELY, OF THE EIGENVALUES.  THE EIGENVALUES 
C ARE UNORDERED EXCEPT THAT COMPLEX CONJUGATE PAIRS 
C OF VALUES APPEAR CONSECUTIVELY WITH THE EIGENVALUE 
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C HAVING THE POSITIVE IMAGINARY PART FIRST.  IF AN 
C ERROR EXIT IS MADE, THE EIGENVALUES SHOULD BE CORRECT 
C FOR INDICES IERR+1,...,N, 
C 
C IERR IS SET TO 
C ZERO       FOR NORMAL RETURN, 
c j          IF THE J-TH EIGENVALUE HAS NOT BEEN 
C DETERMINED AFTER 30 ITERATIONS. 

C 
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW, 
C     APPLIED MATHEMATICS DIVISION, AZZ_RGONNE NATIONAL LABORATORY 

C 
c       

C 
c     ********** MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING 
C THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC. 

C 
P ********** 

MACHEP = 2.** (-47) 
C 

IERR = 0 
NORM =0.0 
K = 1 

Q     ********** STORE ROOTS ISOLATED BY ZZ_BALANC 
C AND COMPUTE MATRIX NORM ********** 

DO 50 I = 1, N 
C 

DO 40 J = K, N 
40    NORM = NORM + ABS(H(I,J)) 

C 
K = I 
IF (I .GE. LOW .AND. I .LE. IGH) GO TO 50 
WR(I) = H(I,I) 
WI(I) =0.0 

50 CONTINUE 
C 

EN = IGH 
T = 0.0 

c     ********** SEARCH FOR NEXT EIGENVALUES ********** 
60 IF (EN .LT. LOW) GO TO 1001 

ITS = 0 
NA = EN - 1 
ENM2 = NA - 1 

c     ********** LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT 
C FOR L=EN STEP -1 UNTIL LOW DO — ********** 

70 DO 80 LL = LOW, EN 
L = EN + LOW - LL 
IF (L .EQ. LOW) GO TO 100 
S = ABS(H(L-1,L-1)) + ABS(H(L,L)) 
IF (S .EQ. 0.0) S = NORM 
IF (ABS(H(L,L-1)) .LE. MACHEP * S) GO TO 100 

80 CONTINUE 
c     ********** FORM SHIFT ********** 

100 X = H(EN,EN) 
IF (L .EQ. EN) GO TO 270 
Y = H(NA,NA) 
W = H(EN,NA) * H(NA,EN) 
IF (L .EQ. NA) GO TO 280 
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IF (ITS .EQ. 30) GO TO 1000 
IF (ITS .NE. 10 .AND. ITS .NE. 20) GO TO 130 

c     ********** FORM EXCEPTIONAL SHIFT ********** 
T = T + X 

C 
DO 120 I = LOW, EN 

120 H(I,I) = H(I,I) - X 
C 

S = ABS(H(EN,NA)) + ABS(H(NA,ENM2)) 
X = 0.75 * S 
Y = X 
W  0.4375 * S * S 

130 ITS = ITS + 1 
C     ********** LOOK FOR TWO CONSECUTIVE SMALL 
C SUB-DIAGONAL ELEMENTS. 
C FOR M=EN-2 STEP -1 UNTIL L DO — ********** 

DO 140 MM = L, ENM2 
M = ENM2 + L - MM 
ZZ = H(M,M) 
R = X - ZZ 
S = Y - ZZ 
P = (R * S - W) / H(M+1,M) + H(M,M+1) 
Q = H(M+1,M+1) - ZZ - R - S 
R = H(M+2,M+1) 
S = ABS(P) + ABS(Q) + ABS(R) 
P = P / S 
Q = Q / S 
R = R / S 
IF (M .EQ. L) GO TO 150 
IF (ABS(H(M,M-1)) * (ABS(Q) + ABS(R)) 
* (ABS(H(M-1,M-1)) + ABS(ZZ) + ABS(H 

CONTINUE 

ABS(P) 
X    * (ABS(H(M-1,M-1)) + ABS(ZZ) + ABS(H(M+1,M+1)))) GO TO 150 

140 

150 MP2 = M + 2 

GO TO 160 

QR STEP INVOLVING ROWS L TO EN AND 
M TO EN ********** 

DO 260 K = M, NA 
NOTLAS = K .NE. NA 
IF (K .EQ. M) GO TO 170 
P = H(K,K-1) 
Q = H(K+1,K-1) 
R = 0.0 
IF (NOTLAS) R = H(K+2,K-1) 
X = ABS(P) + ABS(Q) + ABS(R) 

0.0) GO TO 260 

DO 160 I = MP2, EN 
H(I,I- -2) = 0.0 
IF (I .EQ. MP2) 
H(I,I- -3) = 0.0 

160 CONTINUE 
C ********** DOUBLE 
c COLUMNS 

IF (X .EQ 
P = P / X 
Q = Q / X 
R = R / X 

170 S   =  SIGN(SQRT(P*P+Q*Q+R*R),P) 
IF    (K   .EQ.   M)    GO   TO   180 
H(K,K-1)   =  -S   *   X 
GO  TO   190 
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180    IF (L .NE. M) H(K,K-1) = -H(K,K-1) 
190    P = P + S 

X = P / S 
Y = Q / S 
ZZ = R / S 
Q = Q / P 
R = R / P 

********** ROW MODIFICATION ********** 
DO 210 J = K, EN 

P = H(K,J) + Q * H(K+1,J) 
IF (.NOT. NOTLAS) GO TO 200 
P = P + R * H(K+2,J) 
H(K+2,J) = H(K+2,J) - P * ZZ 

200       H(K+1,J) = H(K+1,J) - P * Y 
H(K,J) = H(K,J) - P * X 

210    CONTINUE 

J = MIN0(EN,K+3) 
********** COLUMN MODIFICATION ********** 

DO 230 I = L, J 
P = X * H(I,K) + Y * H(I,K+1) 
IF (.NOT. NOTLAS) GO TO 220 
P = P + ZZ * H(I,K+2) 
H(I,K+2) = H(I,K+2) - P * R 

220       H(I,K+1) = H(I,K+1) - P * Q 
H(I,K) = H(I,K) - P 

230    CONTINUE 

260 CONTINUE 

GO TO 7 0 
********** ONE ROOT FOUND ********** 

270 WR(EN) = X + T 
WI(EN) =0.0 
EN = NA 
GO TO 60 
********** TWO ROOTS FOUND ********** 

280 P = (Y - X) / 2.0 
Q = p * p + W 
ZZ = SQRT(ABS(Q)) 
X = X + T 
IF (Q .LT. 0.0) GO TO 320 
********** REAL PAIR ********** 
ZZ = P + SIGN(ZZ,P) 
WR(NA) = X + ZZ 
WR(EN) = WR(NA) 
IF (ZZ .NE. 0.0) WR(EN) = X - W / ZZ 
WI(NA) =0.0 
WI(EN) =0.0 
GO TO 330 
********** COMPLEX PAIR ********** 

320 WR(NA) = X + P 
WR(EN) = X + P 
WI(NA) = ZZ 
WI(EN) = -ZZ 

330 EN = ENM2 
GO TO 60 
********** SET ERROR — NO CONVEZZ_RGENCE TO AN 
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C EIGENVALUE AFTER 30 ITERATIONS ********** 
1000 IERR = EN 
1001 RETURN 

c     ********** LAST CARD OF ZZ_HQR ********** 
END 

*DECK ZZ_ELTRAN 
C 

C 

C 
SUBROUTINE ZZ ELTRAN(NM,N,LOW,IGH,A,INT,Z) 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
DIMENSION A(NM,IGH),Z(NM,N) 
DIMENSION INT(IGH) 

C 
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ELMTRANS, 
C NUM. MATH. 16, 181-204(1970) BY PETERS AND WILKINSON. 
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 372-395(1971). 
C 
C THIS SUBROUTINE ACCUMULATES THE STABILIZED ELEMENTARY 
C SIMILARITY TRANSFORMATIONS USED IN THE REDUCTION OF A 
C REAL GENERAL MATRIX TO UPPER HESSENBEZZ_RG FORM BY  ZZ_ELMHES. 
C 
C ON INPUT- 
C 
C NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL 
C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM 
C DIMENSION STATEMENT, 
C 
C N IS THE ORDER OF THE MATRIX, 
C 
C LOW AND IGH ARE INTEGERS DETERMINED BY THE ZZ_BALANCING 
C SUBROUTINE  ZZ_BALANC.  IF  ZZ_BALANC  HAS NOT BEEN USED, 
C SET LOW=l, IGH=N, 
C 
C A CONTAINS THE MULTIPLIERS WHICH WERE USED IN THE 
C REDUCTION BY  ZZ_ELMHES  IN ITS LOWER TRIANGLE 
C BELOW THE SUBDIAGONAL, 
C 
C INT CONTAINS INFORMATION ON THE ROWS AND COLUMNS 
C INTERCHANGED IN THE REDUCTION BY  ZZ_ELMHES. 
C ONLY ELEMENTS LOW THROUGH IGH ARE USED. 
C 
C ON OUTPUT- 
C 
C Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN THE 
C REDUCTION BY  ZZ_ELMHES. 
C 
C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW, 
C APPLIED MATHEMATICS DIVISION, AZZ_RGONNE NATIONAL LABORATORY 
C 
c   

c 
c ********** INITIALIZE Z TO IDENTITY MATRIX ********** 

DO 80 I = 1, N 
C 

DO 60 J = 1, N 
60    Z(I,J) = 0.0 
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c 
z(i,i) = l.o 

80 CONTINUE 
C 

KL = IGH - LOW - 1 
IF (KL .LT. 1) GO TO 200 

c     ********** FOR MP=IGH-1 STEP -1 UNTIL LOW+1 DO — ********** 
DO 140 MM = 1, KL 

MP = IGH - MM 
MP1 = MP + 1 

C 

DO 100 I = MPl, IGH 
100    Z(I,MP) = A(I,MP-1) 

I = INT(MP) 
IF (I .EQ. MP) GO TO 140 

C 
DO 130 J = MP, IGH 

Z(MP,J) = Z(I,J) 
Z(I,J) = 0.0 

130    CONTINUE 
C 

Z(I,MP) = 1.0 
14 0 CONTINUE 

C 
200 RETURN 

c     ********** LAST CARD OF ZZ_ELTRAN ********** 
END 

*DECK ZZ_HQR2 
C 
c       

C 
SUBROUTINE ZZ_HQR2(NM,N,LOW,IGH, H, WR, WI, Z, IERR) 

C 
C    Note: Intrinsic functions REAL, AIMAG, and CMPLX have been replaced 
C    by their DOUBLE PRECISION equivalents DREAL, DIMAG, and DCMPLX. 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
COMPLEX*16 Z3 
INTEGER EN,ENM2 
DIMENSION H(NM,N),WR(N),WI(N),Z(NM,N) 
DOUBLE PRECISION NORM,MACHEP 
LOGICAL NOTLAS 

C 
C 
C     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ZZ_HQR2, 
C     NUM. MATH. 16, 181-204(1970) BY PETERS AND WILKINSON. 
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 372-395(1971). 

C 
C THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS 
C OF A REAL UPPER HESSENBEZZ_RG MATRIX BY THE QR METHOD.  THE 
C EIGENVECTORS OF A REAL GENERAL MATRIX CAN ALSO BE FOUND 
C IF  ZZ_ELMHES  AND  ZZ_ELTRAN  OR  ORTHES  AND  ORTRAN  HAVE 
C BEEN USED TO REDUCE THIS GENERAL MATRIX TO HESSENBEZZ_RG FORM 
C AND TO ACCUMULATE THE SIMILARITY TRANSFORMATIONS. 

C 
C     ON INPUT- 
C 
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL 
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C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM 
C DIMENSION STATEMENT, 
C 
C N IS THE ORDER OF THE MATRIX, 
C 
C LOW AND IGH ARE INTEGERS DETERMINED BY THE ZZ_BALANCING 
C SUBROUTINE  ZZ_BALANC.  IF  ZZ_BALANC  HAS NOT BEEN USED, 
C SET LOW=l, IGH=N, 
C 
C H CONTAINS THE UPPER HESSENBEZZ_RG MATRIX, 
C 
C Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED BY  ZZ_ELTRAN 
C AFTER THE REDUCTION BY  ZZ_ELMHES, OR BY  ORTRAN  AFTER THE 
C REDUCTION BY  ORTHES, IF PERFORMED.  IF THE EIGENVECTORS 
C OF THE HESSENBEZZ_RG MATRIX ARE DESIRED, Z MUST CONTAIN THE 
C IDENTITY MATRIX. 
C 
C ON OUTPUT- 
C 
C H HAS BEEN DESTROYED, 
C 
C WR AND WI CONTAIN THE REAL AND IMAGINARY PARTS, 
C RESPECTIVELY, OF THE EIGENVALUES.  THE EIGENVALUES 
C ARE UNORDERED EXCEPT THAT COMPLEX CONJUGATE PAIRS 
C OF VALUES APPEAR CONSECUTIVELY WITH THE EIGENVALUE 
C HAVING THE POSITIVE IMAGINARY PART FIRST.  IF AN 
C ERROR EXIT IS MADE, THE EIGENVALUES SHOULD BE CORRECT 
C FOR INDICES IERR+1,...,N, 
C 
C Z CONTAINS THE REAL AND IMAGINARY PARTS OF THE EIGENVECTORS. 
C IF THE I-TH EIGENVALUE IS REAL, THE I-TH COLUMN OF Z 
C CONTAINS ITS EIGENVECTOR.  IF THE I-TH EIGENVALUE IS COMPLEX 
C WITH POSITIVE IMAGINARY PART, THE I-TH AND (I+1)-TH 
C COLUMNS OF Z CONTAIN THE REAL AND IMAGINARY PARTS OF ITS 
C EIGENVECTOR.  THE EIGENVECTORS ARE UNNORMALIZED.  IF AN 
C ERROR EXIT IS MADE, NONE OF THE EIGENVECTORS HAS BEEN FOUND, 
C 
C IERR IS SET TO 
C ZERO       FOR NORMAL RETURN, 
C J          IF THE J-TH EIGENVALUE HAS NOT BEEN 
C DETERMINED AFTER 30 ITERATIONS. 
C 
C ARITHMETIC IS REAL EXCEPT FOR THE REPLACEMENT OF THE ALGOL 
C PROCEDURE CDIV BY COMPLEX DIVISION. 
C 
C QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW, 
C APPLIED MATHEMATICS DIVISION, AZZ_RGONNE NATIONAL LABORATORY 
C 
c   

c 
c ********** MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING 
C THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC. 
C 
Q ********** 

MACHEP = 2.** (-47) 
C 

IERR = 0 
NORM =0.0 
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K = 1 
c     ********** STORE ROOTS ISOLATED BY ZZ_BALANC 
C AND COMPUTE MATRIX NORM ********** 

DO 50 I = 1, N 
C 

DO 40 J = K, N 
40    NORM = NORM + ABS(H(I,J)) 

C 
K = I 
IF (I .GE. LOW .AND. I .LE. IGH) GO TO 50 
WR(I) = H(I,I) 
WI(I) =0.0 

50 CONTINUE 
C 

EN = IGH 
T = 0.0 

c     ********** SEARCH FOR NEXT EIGENVALUES ********** 
60 IF (EN .LT. LOW) GO TO 340 

ITS = 0 
NA = EN - 1 
ENM2 = NA - 1 

c     ********** LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT 
C FOR L=EN STEP -1 UNTIL LOW DO — ********** 

70 DO 80 LL = LOW, EN 
L = EN + LOW - LL 
IF (L .EQ. LOW) GO TO 100 
S = ABS(H(L-1,L-D) + ABS(H(L,L)) 
IF (S .EQ. 0.0) S = NORM 
IF (ABS(H(L,L-1)) .LE. MACHEP * S) GO TO 100 

80 CONTINUE 
Q ********** FORM SHIFT ********** 

100 X = H(EN,EN) 
IF (L .EQ. EN) GO TO 270 
Y = H(NA,NA) 
W = H(EN,NA) * H(NA,EN) 
IF (L .EQ. NA) GO TO 280 
IF (ITS .EQ. 30) GO TO 1000 
IF (ITS .NE. 10 .AND. ITS -NE. 20) GO TO 130 

c     ********** FORM EXCEPTIONAL SHIFT ********** 
T = T + X 

C 
DO 120 I = LOW, EN 

120 H(I,I) = H(I,I) - X 
C 

S = ABS(H(EN,NA)) + ABS(H(NA,ENM2)) 
X = 0.75 * S 
Y = X 
W = -0.4375 * S * S 

130 ITS = ITS + 1 
c     ********** LOOK FOR TWO CONSECUTIVE SMALL 
C SUB-DIAGONAL ELEMENTS. 
C FOR M=EN-2 STEP -1 UNTIL L DO — ********** 

DO 140 MM = L, ENM2 
M = ENM2 + L - MM 
ZZ = H(M,M) 
R = X - ZZ 
S = Y - ZZ 
P = (R * S - W) / H(M+1,M) + H(M,M+1) 
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Q = H(M+1,M+1) - ZZ - R - S 
R = H(M+2,M+1) 
S = ABS(P) + ABS(Q) + ABS(R) 
P = P / S 
Q = Q / S 
R = R / S 
IF (M .EQ. L) GO TO 150 
IF (ABS(H(M,M-D) * (ABS(Q) + ABS (R) ) . LE. MACHEP * ABS(P) 

X    * <ABS(H(M-1,M-1)) + ABS(ZZ) + ABS(H(M+l,M+l)))) GO TO 150 
140 CONTINUE 

C 
150 MP2 = M + 2 

C 
DO 160 I = MP2, EN 

H(I,I-2) = 0.0 
IF (I .EQ. MP2) GO TO 160 
H(I,I-3) = 0.0 

160 CONTINUE 
c     ********** DOUBLE QR STEP INVOLVING ROWS L TO EN AND 
C COLUMNS M TO EN ********** 

DO 260 K = M, NA 
NOTLAS = K .NE. NA 
IF (K .EQ. M) GO TO 170 
P = H(K,K-1) 
Q = H(K+1,K-1) 
R = 0.0 
IF (NOTLAS) R = H(K+2,K-1) 
X = ABS(P) + ABS(Q) + ABS(R) 
IF (X .EQ. 0.0) GO TO 260 
P = P / X 
Q = Q / X 
R = R / X 

170    S = SIGN(SQRT(P*P+Q*Q+R*R) ,P) 
IF (K .EQ. M) GO TO 180 
H(K,K-1) = -S * X 

•1) 
GO TO 190 

180 IF (L .NE. M) H(K,K-1) = -H(K,K 
190 P = P + S 

X = P / S 
Y = Q / S 
ZZ = R / S 
Q = Q / P 
R = R / P 

********** ROW MODIFICATION ****** 
DO 210 J = K, N 

P = H(K,J) + Q * H(K+1,J) 
IF (.NOT. NOTLAS) GO TO 200 
P = P + R * H(K+2,J) 
H(K+2,J) = H(K+2,J) - P * ZZ 

200 H(K+1,J) = H(K+1,J) - P * Y 
H(K,J) = H(K,J) - P * X 

210 CONTINUE 

J = MIN0(EN,K+3) 
********** COLUMN MODIFICATION ********** 

DO 230 I = 1, J 
P = X * H(I,K) + Y * H(I,K+1) 
IF (.NOT. NOTLAS) GO TO 220 
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P = P + ZZ * H(I,K+2) 
H(I,K+2) = H(I,K+2) - P * R 

220       H{I,K+1) = H(I,K+1) - P * Q 
H(I,K) = H(I,K) - P 

230    CONTINUE 
********** ACCUMULATE TRANSFORMATIONS ********** 

DO 250 I = LOW, IGH 
P = X * Z(I,K) + Y * Z(I,K+1) 
IF (.NOT. NOTLAS) GO TO 240 
P = P + ZZ * Z(I,K+2) 
Z(I,K+2) = Z(I,K+2) - P * R 

240       Z(I,K+1) = Z(I,K+1) - P * Q 
Z(I,K) = Z(I,K) - P 

250    CONTINUE 

260 CONTINUE 

GO TO 70 
********** ONE ROOT FOUND ********** 

270 H(EN,EN) = X + T 
WR(EN) = H(EN,EN) 
WI(EN) =0.0 
EN = NA 
GO TO 60 
********** TWO ROOTS FOUND ********** 

280 P = (Y - X) / 2.0 
Q = P * P + W 
ZZ = SQRT(ABS(Q)) 
H(EN,EN) = X + T 
X = H(EN,EN) 
H(NA,NA) = Y + T 
IF (Q .LT. 0.0) GO TO 320 
********** REAL PAIR ********** 
ZZ = P + SIGN(ZZ,P) 
WR(NA) = X + ZZ 
WR(EN) = WR(NA) 
IF (ZZ .NE. 0.0) WR(EN) = X - W / ZZ 
WI(NA) =0.0 
WI(EN) =0.0 
X = H(EN,NA) 
S = ABS(X) + ABS(ZZ) 
P = X / S 
Q = ZZ / S 
R = SQRT(P*P+Q*Q) 
P = P / R 
Q = Q / R 
********** ROW MODIFICATION ********** 
DO 290 J = NA, N 

ZZ = H(NA,J) 
H(NA,J) = Q * ZZ + P * H(EN,J) 
H(EN,J) = Q * H(EN,J) - P * ZZ 

290 CONTINUE 
********** COLUMN MODIFICATION ********** 
DO 300 I = 1, EN 

ZZ = H(I,NA) 
H(I,NA) = Q * ZZ + P * H(I,EN) 
H(I,EN) = Q * H(I,EN) - P * ZZ 

300 CONTINUE 
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C     ********** ACCUMULATE TRANSFORMATIONS ********** 
DO 310 I = LOW, IGH 

ZZ = Z(I,NA) 
Z(I,NA) = Q * ZZ + P * Z(I,EN) 
Z(I,EN) = Q * Z(I,EN) - P * ZZ 

310 CONTINUE 
C 

GO TO 330 
C     ********** COMPLEX PAIR ********** 

320 WR(NA) = X + P 
WR(EN) = X + P 
WI(NA) = ZZ 
WI(EN) = -ZZ 

330 EN = ENM2 
GO TO 60 

c     ********** ALL ROOTS FOUND.  BACKSUBSTITUTE TO FIND 
C VECTORS OF UPPER TRIANGULAR FORM ********** 

340 IF (NORM .EQ. 0.0) GO TO 1001 
c     ********** FOR EN=N STEP -1 UNTIL 1 DO — ********** 

DO 800 NN = 1, N 
EN = N + 1 - NN 
P = WR(EN) 
Q = WI(EN) 
NA = EN - 1 
IF (Q) 710, 600, 800 

C     ********** REAL VECTOR ********** 
600    M = EN 

H(EN,EN) =1.0 
IF (NA .EQ. 0) GO TO 800 

c     ********** FOR I=EN-1 STEP -1 UNTIL 1 DO — ********** 
DO 700 II = 1, NA 

I = EN - II 
W = H(I,I) - P 
R = H(I,EN) 
IF (M .GT. NA) GO TO 620 

C 
DO 610 J = M, NA 

610       R = R + H(I,J) * H(J,EN) 
C 

620       IF (WI(I) .GE. 0.0) GO TO 630 
ZZ = W 
S = R 
GO TO 700 

630       M = I 
IF (WI(I) .NE. 0.0) GO TO 640 
T = W 
IF (W .EQ. 0.0) T = MACHEP * NORM 
H(I,EN) = -R / T 
GO TO 700 

c     ********** SOLVE REAL EQUATIONS ********** 
640       X = H(I,I+1) 

Y = H(I+1,I) 
Q = (WR(I) - P) * (WR(I) - P) + WI(I) * WI(I) 
T = (X * S - ZZ * R) / Q 
H(I,EN) = T 
IF (ABS(X) .LE. ABS(ZZ)) GO TO 650 
H(I+1,EN) = (-R - W * T) / X 
GO TO 700 
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650       H(I+1,EN) = (-S - Y * T) / ZZ 
700    CONTINUE 

C     ********** END REAL VECTOR ********** 
GO TO 800 

Q ********** COMPLEX VECTOR ********** 

710    M = NA 
c     ********** LAST VECTOR COMPONENT CHOSEN IMAGINARY SO THAT 
C EIGENVECTOR MATRIX IS TRIANGULAR ********** 

IF (ABS(H(EN,NA)) .LE. ABS(H(NA,EN))) GO TO 720 
H(NA,NA) = Q / H(EN,NA) 
H(NA,EN) = -(H(EN,EN) - P) / H(EN,NA) 
GO TO 730 

720    Z3 = DCMPLX(0.0D0,-H(NA,EN)) / DCMPLX(H(NA,NA)-P,Q) 
H(NA,NA) = DREAL(Z3) 
H(NA,EN) = DIMAG(Z3) 

730    H(EN,NA) =0.0 
H(EN,EN) =1.0 
ENM2 = NA - 1 
IF (ENM2 .EQ. 0) GO TO 800 

C     ********** FOR I=EN-2 STEP -1 UNTIL 1 DO — ********** 

DO 790 II = 1, ENM2 
I = NA - II 
W = H(I,I) - P 
RA = 0.0 
SA = H(I,EN) 

C 
DO 760 J = M, NA 

RA = RA + H(I,J) * H(J,NA) 
SA = SA + H(I,J) * H(J,EN) 

760       CONTINUE 
C 

IF (WI(I) .GE. 0.0) GO TO 770 
ZZ = W 
R = RA 
S = SA 
GO TO 790 

770       M = I 
IF (WI(I) .NE. 0.0) GO TO 780 
Z3 = DCMPLX(-RA,-SA) / DCMPLX(W,Q) 
H(I,NA) = DREAL(Z3) 
H(I,EN) = DIMAG(Z3) 
GO TO 790 

c     ********** SOLVE COMPLEX EQUATIONS ********** 
780       X = H(I,I+1) 

Y = H(I+1,I) 
VR = (WR(I) - P) * (WR(I) - P) + WI(I) * WI(I) - Q * Q 
VI = (WR(I) - P) * 2.0 * Q 
IF (VR .EQ. 0.0 .AND. VI .EQ. 0.0) VR = MACHEP * NORM 

X       * (ABS(W) + ABS(Q) + ABS(X) + ABS(Y) + ABS(ZZ)) 
Z3 = DCMPLX(X*R-ZZ*RA+Q*SA,X*S-ZZ*SA-Q*RA) / DCMPLX(VR,VI) 
H(I,NA) = DREAL(Z3) 
H(I,EN) = DIMAG(Z3) 
IF (ABS(X) .LE. ABS(ZZ) + ABS(Q)) GO TO 785 
H(I+1,NA) = (-RA - W * H(I,NA) + Q * H(I,EN)) / X 
H(I+1,EN) = (-SA - W * H(I,EN) - Q * H(I,NA)) / X 
GO TO 790 

785       Z3 = DCMPLX(-R-Y*H(I,NA),-S-Y*H(I,EN)) / DCMPLX(ZZ,Q) 
H(I+1,NA) = DREAL(Z3) 
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H(I+1,EN) = DIMAG(Z3) 
790 CONTINUE 

c ********** END COMPLEX VECTOR ********** 
800 CONTINUE 

c ********** END BACK SUBSTITUTION. 

1     c VECTORS OF ISOLATED ROOTS ********** 
DO 840 I = 1, N 

c 
IF (I .GE. LOW .AND. I .LE. IGH) GO TO 840 

DO 820 J = I, N 

c 
820 Z(I,J) = H(I,J) 

840 CONTINUE 
c ********** MULTIPLY BY TRANSFORMATION MATRIX TO GIVE 

1    c VECTORS OF ORIGINAL FULL MATRIX. 
c FOR J=N STEP -1 UNTIL LOW DO — ********** 

DO 880 JJ = LOW, N 
J = N + LOW - JJ 

c 
M = MIN0(J,IGH) 

DO 880 I = LOW, IGH 

c 
1 

ZZ = 0.0 

DO 860 K = LOW, M 

1      0 
860 ZZ = ZZ + Z(I,K) * H(K,J) 

Z(I,J) = ZZ 

1     c 880 CONTINUE 

GO TO 1001 
c ********** SET ERROR — NO CONVEZZ_RGENCE TO AN 

1     c EIGENVALUE AFTER 30 ITERATIONS ********** 
1        1000 IERR = EN 

1001 RETURN 
c ********** LAST CARD OF ZZ HQR2 ********** 

END 
1        *DECK 

c 
ZZ_BALBAK 

1 
c 

c 
SUBROUTINE ZZ_BALBAK(NM,N,LOW,IGH,SCALE,M,Z) 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 

c 
c 

DIMENSION SCALE(N),Z(NM,M) 

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ZZ_BALBAK, 

1     c NUM. MATH. 13, 293-304(1969) BY PARLETT AND REINSCH. 
1     c 

c 
1     c 

HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 315-326(1971). 

THIS SUBROUTINE FORMS THE EIGENVECTORS OF A REAL GENERAL 
c MATRIX BY BACK TRANSFORMING THOSE OF THE CORRESPONDING 
c 
c 
c 

ZZ BALANCED MATRIX DETERMINED BY  ZZ_BALANC. 

ON INPUT- 
c 
c NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL 

c ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM 

c DIMENSION STATEMENT, 
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c 
C        N IS THE ORDER OF THE MATRIX, 
C 
C        LOW AND IGH ARE INTEGERS DETERMINED BY  ZZ_BALANC, 
C 
C        SCALE CONTAINS INFORMATION DETERMINING THE PERMUTATIONS 
C AND SCALING FACTORS USED BY  ZZ_BALANC, 
C 
C        M IS THE NUMBER OF COLUMNS OF Z TO BE BACK TRANSFORMED, 

C 
C        Z CONTAINS THE REAL AND IMAGINARY PARTS OF THE EIGEN- 
C VECTORS TO BE BACK TRANSFORMED IN ITS FIRST M COLUMNS. 

C 
C     ON OUTPUT- 
C 
C        Z CONTAINS THE REAL AND IMAGINARY PARTS OF THE 
C TRANSFORMED EIGENVECTORS IN ITS FIRST M COLUMNS. 

C 
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW, 
C     APPLIED MATHEMATICS DIVISION, AZZ_RGONNE NATIONAL LABORATORY 

C 
c       

C 
IF (M .EQ. 0) GO TO 200 
IF (IGH .EQ. LOW) GO TO 120 

C 
DO 110 I = LOW, IGH 

S = SCALE(I) 
c     ********** LEFT HAND EIGENVECTORS ARE BACK TRANSFORMED 
C IF THE FOREGOING STATEMENT IS REPLACED BY 
C S=1.0/SCALE(I). ********** 

DO 100 J = 1, M 
100    Z(I,J) = Z(I,J) * S 

C 
110 CONTINUE 

c     ********_ FOR I=LOW-l STEP -1 UNTIL 1, 
C IGH+1 STEP 1 UNTIL N DO — ********** 

120 DO 140 II = 1, N 
I = II 
IF (I .GE. LOW .AND. I .LE. IGH) GO TO 140 
IF (I .LT. LOW) I = LOW - II 
K = SCALE(I) 
IF (K .EQ. I) GO TO 140 

C 
DO 130 J = 1, M 

S = Z(I,J) 
Z(I,J) = Z(K,J) 
Z(K,J) = S 

130    CONTINUE 
C 

14 0 CONTINUE 
C 

200 RETURN 
c     ********** LAST CARD OF ZZ_BALBAK ********** 

END 
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